Wal-Mart

US 16 / Sammis Trail / Moon Meadows Traffic Impact Study

Rapid City, South Dakota

Prepared for

Wal-Mart Stores, Inc.

At the request of BFA, Inc.

This document originally issued and sealed by Jason L. Kjenstad, Registered Professional Engineer, Reg. 7905, on 12/29/05. This media should not be considered a certified document.

Prepared by HDR Engineering, Inc.

HR ONE COMPANY Many Solutions ⁵⁴	Memo
To: City of Rapid City Planning Staff (Vicki Fischer, Marcia	Elkins, and John Less) & SDDOT (Monica Heller)
From: Jason Kjenstad-HDR	Project: Wal*Mart Study – Rapid City, SD
CC: Joe Feldmann, BFA	
Date: 12-23-2005	Job No: 20494

Traffic Impact Analysis 12-23-05

Study Objective

The objective of this traffic impact study is to determine if the US 16 / Moon Meadows / Sammis Trail intersection and proposed intersections can support the traffic generated by a proposed Wal*Mart Supercenter.

Executive Summary

A traffic impact analysis was performed for a new mixed-use development near US Highway 16 and Sammis Trail in Rapid City, SD. This mixed-use development includes a Wal*Mart, a hotel, 4 retail lots, and 300 single-family detached housing lots. A level of service (LOS) analysis was preformed for the intersection of US 16 and Sammis Trail, as well as four additional intersections within the development. The analysis revealed that a signal is warranted at the intersection of US 16 / Sammis Road / Moon Meadows Drive with dual left-turn lanes for the westbound and southbound approaches, as well as a free right-turn lane for the westbound approach. An additional signal is warranted at the intersection of Sammis Trail at the Main Access Road, along with exclusive left and right-turn lanes on the eastbound approach (assuming full site development). A signal at Sammis Trail/Main Access Road does not meet signal warrant criteria opening day therefore should not be installed until it is warranted. All other intersections operate at LOS C or better.

Based on the criteria that all proposed intersections must be mitigated to operate at LOS C or better, the US 16 / Moon Meadows / Sammis Trail access and proposed internal intersections with mitigation as recommended will provide acceptable operations. A connection to Catron Boulevard is not needed based on the LOS criteria established for this study.

Driveway locations as indicated on the figures are the recommended locations determined from this traffic analysis. It is recommended that Sammis Trail have limited access since it is classified as an arterial for the City of Rapid City.

The intersection of Sammis Trail / Rearage Road operates at an acceptable LOS and does not warrant a traffic signal.

It is recommended that either a continuous left-turn lane or left-turn lanes within a median section be provided at each intersection on the Rearage Road. As development increases north of this area, the turn lanes will provide additional safety and capacity.

Several types of signal control options were evaluated with the recommended lane geometry to determine if queuing along Sammis Trail would have a negative impact at the US 16 / Sammis Trail intersection and Sammis Trail / Main access road. Both protected only and permitted/protected left-turn phasing, along

with actuated uncoordinated and actuated coordinated timing plans were evaluated using SimTRAFFIC simulation software. The simulation results revealed that protected phasing at US 16 / Moon Meadows / Sammis Trail allows for acceptable queues with no spill back into other intersections when actuated uncoordinated signals were used. Permitted/protected phasing was used at Sammis Trail / Main Access Road. SimTRAFFIC also verified the length of the recommended storage lanes were sufficient and that merging the southbound dual left-turn lanes on US 16 into a single left-turn lane at the Main Access Road into Wal*Mart would not negatively traffic operations; the analysis indicates that the spacing of 850 feet is sufficient. It is recommended the detector loops be placed according to the SDDOT recommended procedure or video detection be used to allow the signals to operate fully-actuated. During the construction of the Sammis Trail / Main Access Road intersection, signal conduit should be installed across the roadway in preparation for a future signal.

Background

The proposed development will be located at the southwest corner of the Commerford Ranch Development Park near US 16, Moon Meadows Drive and Sammis Trail. The land uses included in the proposal are shown in **Table 1**.

Land Use Type	Size
Wal*Mart (Discount Superstore)	203,000 sq.ft.
Lot 1 (Specialty Retail)	30,000 sq.ft.
Lot 3 (High Turnover Restaurant)	6,000 sq.ft.
Lot 4 (Specialty Retail)	50,000 sq. ft.
Hotel	150 rooms
Specialty Retail near Hotel	20,000 sq. ft.
Single Family Detached Housing	300 lots

Table 1: Land Use Information

The site plan includes realignment of a portion of Sammis Trail west of US 16 to connect with Moon Meadows Drive at US 16. The Wal*Mart and Lots 1,3, & 4 will be located north of Sammis Trail, while the hotel, specialty retail, and single family houses will be located south of Sammis Trail. The Wal*Mart and Lot 1 will have an access road (Main Access Road) located approximately 850-900 feet east of US 16. The access road will continue south across Sammis Trail to provide access to the hotel and retail, creating a four-legged intersection. Until the Hotel and retail area are developed, an interim connection from existing Sammis Trail will be required. The existing Sammis Trail shall connect to the proposed Sammis Trail at approximately a 90 degree angle. The location of the interim connection shall be a minimum of 200 feet north of the access road to Wal*Mart. This interim connection shall be removed as development begins on the south side of Sammis Trail.

The site plan includes a proposed Rearage Road to the north property line of the proposed Wal*Mart property where it will terminate and will run parallel to US 16. This road would provide access to Wal*Mart and lots along the eastern edge of the development. A driveway will be located approximately 400 feet north of the Rearage Road/Sammis Trail intersection to provide access to Lots 3 & 4. The exact driveway location shall meet City of Rapid City driveway spacing standards. One additional access road will also be constructed to provide direct access to the Rearage Road. The study area encompasses the US 16 / Moon Meadows Drive intersection, plus four additional intersections created by the development:

- US 16 / Moon Meadows Drive / Sammis Trail
- Sammis Trail / Main Access Road (proposed)
- Sammis Trail / Rearage Road (proposed)
- Rearage Trail / East Access Road (proposed)
- Rearage Road / Lot 3 & 4 access (proposed)

An illustration of the proposed development and study area is shown in Figure 1.

Methodology

The main objective of the study was to determine the traffic impacts of the proposed mixed-use development located near the intersection of US 16 and Moon Meadows Drive/Sammis Trail in Rapid City, South Dakota. A traffic operations analysis of the surrounding roadway system and proposed roadways was performed to predict the quality of traffic operations in the area.

- Existing AM and PM peak hour turning movement counts were collected at the intersection of US 16 and Moon Meadows Drive (Figure 2). The existing counts were adjusted to represent summer "seasonal" volumes factors supplied by the SDDOT.
- The proposed development trips were estimated using the methodology of <u>ITE Trip Generation</u>, 7th <u>Edition</u>. The PM Peak Hour of Generator rate for the Wal*Mart store was adjusted based on recommendations in a SDDOT completed study "Verify Certain ITE Trip Generation Rate Applications in South Dakota".
- Some portion of the trips to the proposed development may be shared-use trips. An internal capture rate of 16% was agreed upon by City of Rapid City, the State of South Dakota, and HDR to be used in this study.
- The pre-development daily traffic volumes were used to determine the directional orientation of traffic. It was assumed the development would alter the directional orientation as shown in Figure 3.
- Capacity analyses were performed for the AM and PM peak hours. The following scenarios will be evaluated:
 - Existing Conditions
 - 2005 Build Condition Existing volumes added to the build volumes (proposed development trips).
 - 2020 Build Condition Existing volumes increased at a rate of 2% per year for 15 years added to the build volumes (proposed development trips).
- The impacts of the site-generated trips on the surrounding street network were determined using Synchro 6.1 and the methodologies summarized in the <u>Highway Capacity Manual</u>.
- Mitigation measures were identified to provide acceptable operations at the study area intersections.

Trip Generation

<u>ITE Trip Generation, 7th Edition</u> was used to determine the number of expected trips generated by the development during the AM and PM peak hour. Due to the numerous buildings on the proposed site, separate land uses were used in the trip generation calculation. The trip generation rate for the Wal*Mart Superstore was adjusted to 5.00 for the PM Peak Hour of Generator based on a study completed by the South Dakota Department of Transportation.

Based on the high density of retail land uses located in a relatively small area, an internal capture rate of 16% was determined to be a conservative approach for estimating trips for this development. The trips internally captured were routed on the proposed roadways with exception of trips that were allowed to travel between land uses using internal roadways or parking lots.

The site-generated trip summary using this methodology is shown in Table 2.

Table 2

				AM Peak % Enter % Exit ITE TigRate 53% 47% 3.17 48% 52% 6.84 52% 48% 13.5 48% 52% 6.84 55% 45% 0.52 48% 52% 6.84 26% 74% 0.77 Subto Tot		M Peak Ho	Peak Hour of Generator				PM Peak Hour of Generator				
Development	Number	Unit	ITE Land Use	% Enter	% Exit	ITE Trip Rate	Total Trip Ends	Entering Trips	Exiting Trips	% Enter	% Exit	ITE Trip Rate	Total Trip Ends	Entering Trips	Exiting Trips
Wal*Mart	203000	sq ft	813	53%	47%	3.17	644	341	302	52%	48%	5.00	1015	528	487
Lot 1 (Specialty Retail)	30000	sq ft	814	48%	52%	6.84	205	98	107	56%	44%	5.02	151	84	66
Lot 3 (High Turnover Restaurant)	6000	sq ft	932	52%	48%	13.53	81	42	39	55%	45%	18.8	113	62	51
Lot 4 (Specialty Retail)	50000	sq ft	814	48%	52%	6.84	342	164	178	56%	44%	5.02	251	141	110
Hotel	150	Rooms	310	55%	45%	0.52	78	43	35	58%	42%	0.61	92	53	38
Specialty Retail	20000	sq ft	814	48%	52%	6.84	137	66	71	56%	44%	5.02	100	56	44
Houses (SF Detached)	300	lots	210	26%	74%	0.77	231	60	171	64%	36%	1.02	306	196	110
						Subtotal	1718	815	903				2027	1120	907
			Intern	al Trip R	eduction	on - 16%	275	130	145				324	179	145
						Total	1443	684	759				1703	941	762

Note: The PM trip generation rate for Wal*Mart was determined by information provided in a Trip Generation Study conducted by the SDDOT called "Verify Certain ITE Trip Generation Rate Applications" in South Dakota.

Trip Distribution

The orientation of site-generated traffic is the most complex and subjective step in the process of any traffic impact analysis. There are a variety of methods available to estimate the likely orientation of traffic; however, no method can guarantee 100 percent accuracy (people are free to visit this site from any location using whichever route they choose). Therefore, it is important to provide the most reasonable possible analysis in combination with a procedure that is reasonably conservative such that an appropriate "factor of safety" is inherent to the results. Trips were distributed along each of the roadway segments and intersections using the directional orientation from Figure 3 and the layout of the proposed site. It is important to note that several assumptions were made including:

- ✤ 95% of trips entering and exiting Wal*Mart and Lot 1 were assigned via the Main Access Road. The remaining 5% were assigned to the Rearage Road based on the location of the Gas Station.
- All of the trips entering and exiting lot 3 & 4 occurred via the rearage road as no internal access to Wal*Mart exists.
- All of the trips entering and exiting the hotel and retail area south of Sammis Trail used the Main Access Road.
- All of the proposed trips entering and exiting the residential area used Sammis Trail to the east of the Rearage Road.

The site-generated trip distribution for the AM and PM peak hours are shown in **Figures 4** and **5**, respectively.

Post-Development Volume

The existing AM and PM peak hour traffic volumes from Figure 2 were combined with those from Figures 4 and 5, respectively, to determine the total volumes used in the level of service analysis. It is assumed due to the number of land uses estimated in this study that this area will take 5 to10 years to fully developed as only the Wal*Mart store is being proposed at this time. The LOS for each intersection is also documented and represents the unmitigated or baseline scenario. An assessment of the quality of traffic operations and mitigation measures are discussed in the next section. **Figures 6** and **7** documents the anticipated post-development turning movements and LOS for the AM and PM peak hours, respectively.

Analysis Description

Observations of traffic volumes provide an understanding of the general nature of traffic, but are insufficient to indicate either the ability of the street network to carry additional traffic or the quality of service provided by the street system. For this reason the concept of Levels of Service (LOS) was developed to correlate numerical traffic operational data to subjective descriptions of traffic performance at intersections. Each lane of traffic has delay associated with it and therefore a correlating LOS. The weighted average delay for each of these lanes of traffic for a signalized intersection is the intersection LOS. LOS categories range from LOS A (best) to F (worst) as shown in **Table 3**.

Level of Service	SIGNALIZED Intersection Control Delay (sec)	UNSIGNALIZED Intersection Control Delay (sec)	Intersection LOS Description
	(300)	(300)	Erection Los Description
A	≤ 10.0	≤ 10.0	Free flow, insignificant delays.
В	10.1-20.0	10.1-15.0	Stable operation, minimal delays.
С	20.1-35.0	15.1-25.0	Stable operation, acceptable delays.
D	35.1-55.0	25.1-35.0	Restricted flow, regular delays.
E	55.1-80.0	35.1-50.0	Maximum capacity, extended delays. Volumes at or near capacity. Long queues form upstream from intersection.
F	> 80.0	> 50.0	Forced flow, excessive delays. Represents jammed conditions. Intersection operates below capacity with low volumes. Queues may block upstream intersections.

Source: Highway Capacity Manual, Transportation Research Board, 2000

The intersection capacity analyses were completed using Synchro 6.1 software. Synchro replicates the analysis procedures defined in the *2000 Highway Capacity Manual*. This manual provides procedures for the analysis of both signalized and unsignalized intersections. It should be noted that stop-controlled intersections are analyzed by identifying the amount of delay at each approach that conflict with other intersection movements (i.e. all movements except the free flow through lanes), thus approach level of service is reported for unsignalized intersections.

LOS C has generally been established as the standard for planning of transportation facilities for peak hour traffic conditions. For this study, LOS "C" for the overall intersection was used as the minimum standard.

A review of the analyses for each volume scenario is provided in the following sections, with summaries of the LOS analyses. Summary LOS output reports of the analysis are included in the appendix and may be referenced to review signal timings and phasing as presented in this study.

Unmitigated Conditions Analysis

Capacity analysis was performed using the existing AM and PM peak hour traffic volumes adjusted where necessary to represent peak summer volumes on the existing and proposed roadway network. In general, the surrounding roadways on the eastern edge of the site are characterized by low levels of traffic with acceptable levels of service based on the lane geometry shown in **Figures 6 and 7**. The US 16 / Sammis Trail / Moon Meadows and Sammis Trail / Main Access Road intersections are characterized by near or over capacity conditions. In this study, it was assumed that the intersection of Sammis Trail / Main Access Road and Sammis Trail / Rearage Road were operated as all-way stop controlled, while the remaining intersections were two-way stop controlled (with US 16 and Rearage Road uncontrolled). A summary of the intersection LOS for the existing conditions is documented in **Table 4**.

			Avg Delay		Avg Delay
	Traffic	AM Peak	per Vehicle	PM Peak	per Vehicle
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
U.S. 16 / Sammis Trail	Two-Way	F	NA ²	F	NA ²
Sammis Trail / Main access	Four-Way				
road	Stop	D ¹	32.2	F ³	64.1
	All-Way				
Sammis Trail / Rearage Road	Stop	А	8.2	A	8.6
Rearage Road / Lot 3 & 4	Two-Way	A	9.9	A	10.0
Rearage Road / East Access	Two-Way	Α	8.5	Α	8.5

 TABLE 4: Unmitigated Condition Intersection Level-of-Service

Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

Note: 1. Worst Approach at LOS F (54.3 sec/veh), overall intersection at LOS D or 32.2 sec/veh Note: 2. Overcapacity conditions

Note: 3. Worst Approach at LOS F (108.2 sec/veh), overall intersection at LOS F or 64.1 sec/veh

The LOS reported for four-way intersections represents overall intersection delay, whereas the delay for unsignalized two-way stop controlled intersections are reported as the "worst approach." This is to account for the potential of vehicles waiting on the minor approaches for unreasonable amounts of time where mainline through vehicles have no delay. Two-way stop controlled intersections having minor approaches operating at LOS D, E, or F do not necessarily require mitigation; however additional minor street approach lanes and investigation of signal warrants may be appropriate.

Mitigation

There are two main areas that will likely require mitigation as a result of the development:

- US Highway 16 / Moon Meadows / Sammis Trail
- Sammis Trail / Wal*Mart Main access road

U.S. Highway 16 / Sammis Trail

As documented in **Figure 6 and 7**, the intersection of US 16 / Sammis Trail is expected to operate at deficient levels after the site is developed. To mitigate this condition, installation of an 8-phase traffic signal with protected left-turn phasing for the northbound and southbound directions and protected left-turns for the eastbound and westbound approaches is the most appropriate measure. A Synchro analysis revealed that this measure improved the level of service to LOS B. Due to the large volume of left-turning traffic from southbound US 16 to Sammis Trail, installation of an additional left-turn lane along southbound US 16 has significant potential to reduce delay. The southbound left-turn lanes shall be designed to allow the left-turning traffic from Sammis Trail onto southbound US 16 also warrants an additional left-turn lane. The westbound left-turn lanes shall be designed to allow the left-turn lane. The westbound left-turn lanes shall be designed to allow the left-turn lane. The westbound left-turn lane shall be designed to allow the left-turn lane. The westbound left-turn lane shall be designed to allow the left-turn lane. The westbound left-turn lane shall be designed to allow the left-turn lane. The westbound left-turn lanes shall be designed to allow the left-turn lane. The westbound left-turn lane should be given a separate lane to make free right-turning traffic from Sammis Trail onto northbound US 16 should be given a separate lane to make free right-turns. The free right-turn lane should be long enough (preferably at least 600 feet) to allow traffic to merge onto US 16.

Sammis Trail / Main Access Road

As documented in **Figure 6 and 7**, the intersection of Sammis Trail / Main Access Road is expected to operate at deficient levels after the site is developed. To mitigate this condition, the intersection shall be signalized and the proposed lane geometry shall consist of an exclusive left-turn lane along the eastbound approach from Sammis Trail and a right-turn lane to improve intersection operations, especially in reducing queue lengths. Installation of a 5-phase traffic signal (with permitted-protected left turns for eastbound left-turning traffic) improved PM peak hour operations from LOS F to LOS B.

Summary of Capacity Improvements

Summaries of the mitigated LOS and turning movements are documented in **Figures 8 and 9**, and **Table 5** for the AM and PM peak hours. The following improvements were made:

- ✤ Installation of an 8-phase traffic signal at US Highway 16 / Sammis Trail.
- Solution of an additional southbound left-turn lane along US Highway 16 at Sammis Trail.
- Installation of a free-right turn lane along westbound Sammis Trail at US Highway 16.
- Installation of an additional left-turn lane along westbound Sammis Trail at US Highway 16.
- ✤ Installation of a 600 foot free-right turn acceleration lane along northbound US Highway 16.
- ✤ Installation of a 5-phase traffic signal at Sammis Trail / Main Access Road.
- Installation of a left-turn lane along eastbound Sammis Trail at the Main Access Road.
- Installation of a right-turn lane along eastbound Sammis Trail at the Main access road.

0					
			Avg Delay		Avg Delay
	Traffic	AM Peak	per Vehicle	PM Peak	per Vehicle
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
US 16 / Sammis Trail / Moon					
Meadows	Signal	В	15.6	В	19.0
Sammis Trail / Wal*Mart Main					
access road	Signal	В	17.3	В	12.3
	All-Way				
Sammis Trail / Rearage Road	Stop	А	8.2	А	8.6
Rearage Road / Lot 3 & 4	Two-Way	A	9.9	A	10.0
Rearage Road / East Access	Two-Way	A	8.5	A	8.5

 TABLE 5: Mitigated Intersection Level-of-Service

Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

Future Build (2020) Conditions Analysis

Based on growth trends in the study area, future build (2020) volumes were developed by growing the existing traffic volumes by 2.0 percent per year for 15 years and adding them to the trips generated by the proposed mixed-use development. The growth rate was based on historical count information gathered by the SDDOT. The 2020 build traffic volumes and LOS (AM) are shown in **Figure 10**. The 2020 build traffic volumes and LOS (PM) are shown in **Figure 11**.

The capacity analysis was performed using future build (2020) AM and PM peak hour traffic volumes to determine if the geometric improvements recommended would serve this area in the future. It was determined through an operational analysis that the study intersections would operate at an acceptable LOS in 2020 with no further geometric improvements. A summary of the intersection LOS for the existing conditions is documented in **Table 6**.

	Troffic	AM Dook	Avg Delay	DM Dook	Avg Delay
	Traffic	AIVI Feak	per venicie	FIVI Feak	per venicie
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
US 16 / Sammis Trail / Moon					
Meadows	Signal	В	19.6	С	23.1
Sammis Trail / Wal*Mart Main					
access road	Signal	В	17.4	В	12.3
	All-Way				
Sammis Trail / Rearage Road	Stop	A	8.2	A	8.6
Rearage Road / Lot 3 & 4	Two-Way	A	9.9	A	10.0
Rearage Road / East Access	Two-Way	A	8.5	A	8.5

 TABLE 6: Future Build (2020) Intersection Level-of-Service

Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

APPENDIX

1.) Current Site Plan
 2.) Synchro Print-outs

HCM Unsignalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	۶	-	\mathbf{r}	4	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	351	247	91	5	346	20	89	8	5	6	10	327
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	382	268	99	5	376	22	97	9	5	7	11	355
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	749	403	111	373								
Volume Left (vph)	382	5	97	7								
Volume Right (vph)	99	22	5	355								
Hadj (s)	0.1	0.0	0.2	-0.5								
Departure Headway (s)	6.5	6.9	8.1	6.6								
Degree Utilization, x	1.35	0.78	0.25	0.68								
Capacity (veh/h)	564	493	395	537								
Control Delay (s)	54.3	14.9	11.8	12.8								
Approach Delay (s)	54.3	14.9	11.8	12.8								
Approach LOS	F	В	В	В								
Intersection Summary												
Delay			32.2									
HCM Level of Service			D									
Intersection Capacity Ut	ilization	n 1	02.4%	l	CU Leve	el of Ser	vice		G			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	≯	-	\mathbf{i}	1	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		ર્સ	1	ሻ	^	1	۲	<u>^</u>	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	103	55	15	228	61	473	1	509	206	428	378	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	112	60	16	248	66	514	1	553	224	465	411	22
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2167	2121	205	1738	1918	277	433			777		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2167	2121	205	1738	1918	277	433			777		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	98	0	0	29	100			44		
cM capacity (veh/h)	0	22	801	0	29	721	1123			835		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	172	16	314	514	1	277	277	224	465	205	205	22
Volume Left	112	0	248	0	1	0	0	0	465	0	0	0
Volume Right	0	16	0	514	0	0	0	224	0	0	0	22
cSH	0	801	0	721	1123	1700	1700	1700	835	1700	1700	1700
Volume to Capacity	Err	0.02	Err	0.71	0.00	0.16	0.16	0.13	0.56	0.12	0.12	0.01
Queue Length (ft)	Err	2	Err	151	0	0	0	0	88	0	0	0
Control Delay (s)	Err	9.6	Err	21.4	8.2	0.0	0.0	0.0	14.6	0.0	0.0	0.0
Lane LOS	F	Α	F	С	Α				В			
Approach Delay (s)	Err		Err		0.0				7.6			
Approach LOS	F		F									
Intersection Summary												
Average Delay			Err									
Intersection Capacity Ut	tilization		73.3%	10	CU Leve	el of Sei	vice		D			
Analysis Period (min)			15									

MovementEBLEBTWBTWBRSBLSBRLane Configurations \checkmark \checkmark \checkmark Sign ControlStopStopStopVolume (vph)19464157172214Peak Hour Factor0.920.920.920.920.920.92Hourly flow rate (vph)21170171182233Direction, Lane #EB 1WB 1SB 1Volume Total (vph)280189235Volume Total (vph)280189235Volume Left (vph)018233Hadj (s)0.20.0-0.6Departure Headway (s)4.84.64.4Degree Utilization, x0.380.240.29Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach LOSAAAApproach LOSAAAAAAIntersection Summary8.2KICU Level of ServiceAAnalvsis Period (min)1515KKK		۶	-	+	•	1	∢		
Lane Configurations Image: Control Stop Stop Stop Stop Stop Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 </td <td>Movement</td> <td>EBL</td> <td>EBT</td> <td>WBT</td> <td>WBR</td> <td>SBL</td> <td>SBR</td> <td></td> <td></td>	Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Sign Control Stop Stop Stop Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235	Lane Configurations		ę	el el		Y			
Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1	Sign Control		Stop	Stop		Stop			
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 <t< td=""><td>Volume (vph)</td><td>194</td><td>64</td><td>157</td><td>17</td><td>2</td><td>214</td><td></td><td></td></t<>	Volume (vph)	194	64	157	17	2	214		
Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach LOS A A Intersection Summary 211 211 211 Delay 8.2 1CU Level of Service A Analysis Period (min) 15	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Hourly flow rate (vph)	211	70	171	18	2	233		
Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A Intersection Summary 8.2 HCM Level of Service A Intersection Capacity Utilization 48.8% ICU Level of Service A Analysis Period (min) 15 15 ICU Level of Service ICU Level of Service	Direction, Lane #	EB 1	WB 1	SB 1					
Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Volume Total (vph)	280	189	235					
Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Volume Left (vph)	211	0	2					
Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A Intersection Summary 2 Delay 8.2 HCM Level of Service A Analysis Period (min) 15	Volume Right (vph)	0	18	233					
Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 2 2 Delay 8.2 3 HCM Level of Service A A Intersection Capacity Utilization 48.8% ICU Level of Service A Analysis Period (min) 15 15 3 3	Hadj (s)	0.2	0.0	-0.6					
Degree Utilization, x0.380.240.29Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Departure Headway (s)	4.8	4.6	4.4					
Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection Summary8.2Delay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Degree Utilization, x	0.38	0.24	0.29					
Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Capacity (veh/h)	712	586	778					
Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary Delay 8.2 HCM Level of Service A Intersection Capacity Utilization 48.8% ICU Level of Service A Analysis Period (min) 15 15	Control Delay (s)	8.5	8.0	7.9					
Approach LOS A A A Intersection Summary Intersection Summary Intersection Service A Delay 8.2 Intersection Capacity Utilization A8.8% ICU Level of Service A Intersection Capacity Utilization 48.8% ICU Level of Service A Analysis Period (min) 15 Intersection Service Intersection Service	Approach Delay (s)	8.5	8.0	7.9					
Intersection Summary Delay 8.2 HCM Level of Service A Intersection Capacity Utilization 48.8% ICU Level of Service A Analysis Period (min) 15	Approach LOS	А	А	А					
Delay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAAnalysis Period (min)15	Intersection Summary								
HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAAnalysis Period (min)15	Delay			8.2					
Intersection Capacity Utilization48.8%ICU Level of ServiceAAnalysis Period (min)15	HCM Level of Service			А					
Analysis Period (min) 15	Intersection Capacity Uti	ilizatior	<u> </u>	48.8%	IC	CU Leve	el of Service	Α	
	Analysis Period (min)			15					

	٦	$\mathbf{\hat{v}}$	1	t	ŧ	<	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्स	ĥ		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	14	193	177	34	23	23	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	15	210	192	37	25	25	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	459	38	50				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	459	38	50				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	97	80	88				
cM capacity (veh/h)	491	1035	1557				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	225	229	50				
Volume Left	15	192	0				
Volume Right	210	0	25				
cSH	962	1557	1700				
Volume to Capacity	0.23	0.12	0.03				
Queue Length (ft)	23	11	0				
Control Delay (s)	9.9	6.6	0.0				
Lane LOS	A	A					
Approach Delay (s)	9.9	6.6	0.0				
Approach LOS	A						
Intersection Summary							
Average Delav			7.4				
Intersection Capacity U	tilization		39.0%	10	CU Leve	of Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	≯	\mathbf{F}	1	Ť	Ŧ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	W.			4	î,				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	0	46	48	0	0	0			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	50	52	0	0	0			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	104	0	0						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	104	0	0						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	95	97						
cM capacity (veh/h)	865	1085	1623						
Direction. Lane #	EB 1	NB 1	SB 1						
Volume Total	50	52	0						
Volume Left	0	52	0						
Volume Right	50	0	0						
cSH	1085	1623	1700						
Volume to Capacity	0.05	0.03	0.00						
Queue Length (ft)	4	2	0						
Control Delay (s)	8.5	7.3	0.0						
Lane LOS	А	А							
Approach Delay (s)	8.5	7.3	0.0						
Approach LOS	А								
Intersection Summary									
Average Delav			7.9						
Intersection Capacity U	tilization		13.3%	10	CU Leve	el of Servio	ce	А	
Analysis Period (min)			15						

HCM Unsignalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

≯	-	\mathbf{r}	4	-	•	1	1	1	1	Ŧ	~
EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
	\$			\$			\$			\$	
	Stop			Stop			Stop			Stop	
488	364	92	3	255	20	69	7	4	25	7	442
0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
530	396	100	3	277	22	75	8	4	27	8	480
EB 1	WB 1	NB 1	SB 1								
1026	302	87	515								
530	3	75	27								
100	22	4	480								
0.1	0.0	0.2	-0.5								
6.5	6.2	8.0	6.1								
1.85	0.52	0.19	0.88								
562	495	406	580								
108.2	10.9	11.5	16.4								
108.2	10.9	11.5	16.4								
F	В	В	С								
		64.1									
		F									
ilization	· 1	14.9%	10	CU Leve	el of Ser	vice		Н			
		15									
	 EBL 488 0.92 530 EB 1 1026 530 100 0.1 6.5 1.85 562 108.2 108.2 F ilization 	▶ ▶ ▶ ▶ ▶ ↓ <t< td=""><td>EBL EBT EBR EBL EBT EBR Stop Stop 488 364 92 0.92 0.92 0.92 530 396 100 EB1 WB1 NB1 1026 302 87 530 3 75 100 22 4 0.1 0.0 0.2 6.5 6.2 8.0 1.85 0.52 0.19 562 495 406 108.2 10.9 11.5 562 495 406 108.2 10.9 11.5 F B B I08.2 10.9 15.5 F B B ilization 114.9%</td><td>EBL EBT EBR WBL \bullet Stop 488 364 92 3 0.92 0.92 0.92 0.92 530 396 100 3 EB1 WB1 NB1 SB1 1026 302 87 515 530 3 75 27 100 22 4 480 0.1 0.0 0.2 -0.5 6.5 6.2 8.0 6.1 1.85 0.52 0.19 0.88 562 495 406 580 108.2 10.9 11.5 16.4 F B B C 64.1 F 64.1 F ilization 114.9% 10</td><td>EBL EBT EBR WBL WBT \clubsuit \clubsuit \clubsuit \clubsuit Stop Stop Stop 488 364 92 3 255 0.92 0.92 0.92 0.92 0.92 530 396 100 3 277 EB1 WB1 NB1 SB1 SB1 1026 302 87 515 530 530 3 75 27 100 1026 302 87 515 530 530 3 75 27 100 100 22 4 480 480 0.1 0.0 0.2 -0.5 6.5 6.5 6.2 8.0 6.1 16.4 1.85 0.52 0.19 0.88 16.4 108.2 10.9 11.5 16.4 16.4 F B B C 16.4 IB B C 16.4 16.4 F B</td><td>EBL EBT EBR WBL WBT WBR \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit Stop Stop Stop \clubsuit \clubsuit 488 364 92 3 255 20 0.92 0.92 0.92 0.92 0.92 0.92 530 396 100 3 277 22 EB1 WB1 NB1 SB1 1026 302 87 515 530 3 75 27 1026 302 87 515</td><td>EBL EBT EBR WBL WBT WBR NBL</td><td>▲ ▲</td><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR \bullet \bullet</td><td>EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL Image: Stop Stop Stop Stop Image: Stop</td><td>▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ↓</td></t<>	EBL EBT EBR EBL EBT EBR Stop Stop 488 364 92 0.92 0.92 0.92 530 396 100 EB1 WB1 NB1 1026 302 87 530 3 75 100 22 4 0.1 0.0 0.2 6.5 6.2 8.0 1.85 0.52 0.19 562 495 406 108.2 10.9 11.5 562 495 406 108.2 10.9 11.5 F B B I08.2 10.9 15.5 F B B ilization 114.9%	EBL EBT EBR WBL \bullet Stop 488 364 92 3 0.92 0.92 0.92 0.92 530 396 100 3 EB1 WB1 NB1 SB1 1026 302 87 515 530 3 75 27 100 22 4 480 0.1 0.0 0.2 -0.5 6.5 6.2 8.0 6.1 1.85 0.52 0.19 0.88 562 495 406 580 108.2 10.9 11.5 16.4 F B B C 64.1 F 64.1 F ilization 114.9% 10	EBL EBT EBR WBL WBT \clubsuit \clubsuit \clubsuit \clubsuit Stop Stop Stop 488 364 92 3 255 0.92 0.92 0.92 0.92 0.92 530 396 100 3 277 EB1 WB1 NB1 SB1 SB1 1026 302 87 515 530 530 3 75 27 100 1026 302 87 515 530 530 3 75 27 100 100 22 4 480 480 0.1 0.0 0.2 -0.5 6.5 6.5 6.2 8.0 6.1 16.4 1.85 0.52 0.19 0.88 16.4 108.2 10.9 11.5 16.4 16.4 F B B C 16.4 IB B C 16.4 16.4 F B	EBL EBT EBR WBL WBT WBR \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit \clubsuit Stop Stop Stop \clubsuit \clubsuit 488 364 92 3 255 20 0.92 0.92 0.92 0.92 0.92 0.92 530 396 100 3 277 22 EB1 WB1 NB1 SB1 1026 302 87 515 530 3 75 27 1026 302 87 515	EBL EBT EBR WBL WBT WBR NBL	▲ ▲	EBL EBT EBR WBL WBT WBR NBL NBT NBR \bullet	EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL Image: Stop Stop Stop Stop Image: Stop	▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ↓

HCM Unsignalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	≯	-	\mathbf{i}	1	-	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्स	1		र्स	1	ሻ	^	1	۲	<u>^</u>	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	20	75	6	229	61	477	9	535	283	585	886	75
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	82	7	249	66	518	10	582	308	636	963	82
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	3097	3143	482	2402	2917	291	1045			889		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	3097	3143	482	2402	2917	291	1045			889		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	99	0	0	27	99			16		
cM capacity (veh/h)	0	2	531	0	2	706	662			758		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	103	7	315	518	10	291	291	308	636	482	482	82
Volume Left	22	0	249	0	10	0	0	0	636	0	0	0
Volume Right	0	7	0	518	0	0	0	308	0	0	0	82
cSH	0	531	0	706	662	1700	1700	1700	758	1700	1700	1700
Volume to Capacity	Err	0.01	Err	0.73	0.01	0.17	0.17	0.18	0.84	0.28	0.28	0.05
Queue Length (ft)	Err	1	Err	163	1	0	0	0	240	0	0	0
Control Delay (s)	Err	11.9	Err	22.9	10.5	0.0	0.0	0.0	29.3	0.0	0.0	0.0
Lane LOS	F	В	F	С	В				D			
Approach Delay (s)	Err		Err		0.1				11.1			
Approach LOS	F		F									
Intersection Summary												
Average Delay			Err									
Intersection Capacity Ut	ilization		83.3%	10	CU Leve	el of Ser	vice		E			
Analysis Period (min)			15									

ovementEBLEBTWBTWBRSBLSBRIne ConfigurationsImage: ConfigurationsImage: ConfigurationsImage: ConfigurationsImage: Configurationsgn ControlStopStopStopJume (vph)2161771031215175
Ine Configurations Image: Configuration of the second se
gn Control Stop Stop olume (vph) 216 177 103 12 15 175
plume (vph) 216 177 103 12 15 175
ak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92
ourly flow rate (vph) 235 192 112 13 16 190
rection, Lane # EB 1 WB 1 SB 1
olume Total (vph) 427 125 207
plume Left (vph) 235 0 16
olume Right (vph) 0 13 190
adj (s) 0.1 0.0 -0.5
parture Headway (s) 4.7 4.6 4.6
egree Utilization, x 0.55 0.16 0.27
apacity (veh/h) 746 570 726
ontrol Delay (s) 9.1 7.9 8.1
oproach Delay (s) 9.1 7.9 8.1
proach LOS A A A
ersection Summary
elay 8.6
CM Level of Service A
ersection Capacity Utilization 48.1% ICU Level of Service A
alysis Period (min) 15

	٦	$\mathbf{\hat{z}}$	1	Ť	Ŧ	-			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	¥			र्भ	ĥ				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	16	141	183	45	49	11			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	17	153	199	49	53	12			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	506	59	65						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	506	59	65						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	96	85	87						
cM capacity (veh/h)	458	1006	1537						
Direction Lane #	FR 1	NB 1	SB 1						
Volume Total	171	2/8	65						
Volume Left	17	100	00						
Volume Right	153	0	12						
cSH	807	1537	1700						
Volume to Canacity	0.10	0.13	0.04						
Queue Length (ft)	17	11	0.04						
Control Delay (s)	10.0	6.4	0.0						
Lane LOS	Δ	Δ	0.0						
Approach Delay (s)	10.0	64	0.0						
Approach LOS	A	0.4	0.0						
Interportion Summers									
Average Dates			0.0						
Average Delay	Hilimotics		0.0	14				٨	
Intersection Capacity L	Julization		36.7%	10	JU Leve	er of Servi	ce	A	
Analysis Period (min)			15						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	۶	\mathbf{F}	1	Ť	ŧ	∢			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	M			aî.	î,				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	0	60	61	0	0	0			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	65	66	0	0	0			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	133	0	0						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	133	0	0						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	94	96						
cM capacity (veh/h)	826	1085	1623						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	65	66	0						
Volume Left	0	66	0						
Volume Right	65	0	0						
cSH	1085	1623	1700						
Volume to Capacity	0.06	0.04	0.00						
Queue Length (ft)	5	3	0						
Control Delay (s)	8.5	7.3	0.0						
Lane LOS	А	А							
Approach Delay (s)	8.5	7.3	0.0						
Approach LOS	А								
Intersection Summary									
Average Delay			7.9						
Intersection Capacity U	Itilization		14.2%	I	CU Leve	el of Servic	e	А	
Analysis Period (min)			15						

HCM Signalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	٦	-	\rightarrow	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	5	f,		۲	4Î			र्स	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.95			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.98	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1750		1676	1670			1731	1500
Flt Permitted	0.22	1.00	1.00	0.59	1.00		0.75	1.00			0.94	1.00
Satd. Flow (perm)	383	1765	1500	1049	1750		1316	1670			1662	1500
Volume (vph)	351	247	91	5	346	20	89	8	5	6	10	327
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	382	268	99	5	376	22	97	9	5	7	11	355
RTOR Reduction (vph)	0	0	44	0	4	0	0	4	0	0	0	249
Lane Group Flow (vph)	382	268	55	5	394	0	97	10	0	0	18	106
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	29.8	29.8	29.8	14.8	14.8		16.0	16.0			16.0	16.0
Effective Green, g (s)	29.8	29.8	29.8	14.8	14.8		16.0	16.0			16.0	16.0
Actuated g/C Ratio	0.55	0.55	0.55	0.28	0.28		0.30	0.30			0.30	0.30
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	477	978	831	289	481		391	497			494	446
v/s Ratio Prot	c0.16	0.15			0.23			0.01				
v/s Ratio Perm	c0.28		0.07	0.00			0.07				0.01	0.24
v/c Ratio	0.80	0.27	0.07	0.02	0.82		0.25	0.02			0.04	0.24
Uniform Delay, d1	8.9	6.3	5.6	14.2	18.3		14.3	13.4			13.4	14.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	9.3	0.2	0.0	0.0	10.5		1.5	0.1			0.1	1.2
Delay (s)	18.2	6.5	5.6	14.2	28.8		15.8	13.4			13.6	15.5
Level of Service	В	A	А	В	С		В	В			В	В
Approach Delay (s)		12.3			28.6			15.5			15.4	
Approach LOS		В			С			В			В	
Intersection Summary												
HCM Average Control [Delay		17.3	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci	ity ratio		0.78									
Actuated Cycle Length	(s)		53.8	S	Sum of I	ost time	(s)		8.0			
Intersection Capacity U	tilization		62.9%](CU Leve	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	el 🕺		ሻሻ	•	1	1	<u></u>	1	ሻሻ	<u></u>	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1709		3252	1765	1500	1676	3353	1500	3252	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1709		3252	1765	1500	1676	3353	1500	3252	3353	1500
Volume (vph)	103	55	15	228	61	473	1	509	206	428	378	20
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	112	60	16	248	66	514	1	553	224	465	411	22
RTOR Reduction (vph)	0	15	0	0	0	0	0	0	198	0	0	11
Lane Group Flow (vph)	112	61	0	248	66	514	1	553	26	465	411	11
Turn Type	Prot			Prot		Free	Prot		Over	Prot		Perm
Protected Phases	7	4		3	8		5	2	3	1	6	
Permitted Phases						Free						6
Actuated Green, G (s)	5.8	4.5		6.3	5.0	53.4	0.7	12.7	6.3	13.9	25.9	25.9
Effective Green, g (s)	5.8	4.5		6.3	5.0	53.4	0.7	12.7	6.3	13.9	25.9	25.9
Actuated g/C Ratio	0.11	0.08		0.12	0.09	1.00	0.01	0.24	0.12	0.26	0.49	0.49
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	182	144		384	165	1500	22	797	177	846	1626	728
v/s Ratio Prot	0.07	0.04		0.08	0.04		0.00	c0.16	c0.15	c0.14	0.12	
v/s Ratio Perm						0.34						0.01
v/c Ratio	0.62	0.43		0.65	0.40	0.34	0.05	0.69	0.15	0.55	0.25	0.01
Uniform Delay, d1	22.7	23.2		22.5	22.8	0.0	26.0	18.6	21.1	17.0	8.1	7.1
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.1	2.0		3.7	1.6	0.6	0.9	2.6	0.4	0.7	0.1	0.0
Delay (s)	28.8	25.2		26.2	24.4	0.6	26.9	21.2	21.5	17.8	8.2	7.1
Level of Service	С	С		С	С	Α	С	С	С	В	Α	A
Approach Delay (s)		27.4			10.2			21.3			13.1	
Approach LOS		С			В			С			В	
Intersection Summary												
HCM Average Control D	elay		15.6	6 HCM Level of Service					В			
HCM Volume to Capacit	ty ratio		0.61	1 Current of loopt time of (a)								
Actuated Cycle Length (S)		53.4	4 Sum of lost time (s)					8.0			
Intersection Capacity Ut	lization		51.3%	ICU Level of Service					A			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	+	•	1	∢		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્સ	el el		- M			
Sign Control		Stop	Stop		Stop			
Volume (vph)	194	64	157	17	2	214		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	211	70	171	18	2	233		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	280	189	235					
Volume Left (vph)	211	0	2					
Volume Right (vph)	0	18	233					
Hadj (s)	0.2	0.0	-0.6					
Departure Headway (s)	4.8	4.6	4.4					
Degree Utilization, x	0.38	0.24	0.29					
Capacity (veh/h)	712	586	778					
Control Delay (s)	8.5	8.0	7.9					
Approach Delay (s)	8.5	8.0	7.9					
Approach LOS	А	А	А					
Intersection Summary								
Delay			8.2					
HCM Level of Service			А					
Intersection Capacity Uti	ilizatior	<u> </u>	48.8%	IC	CU Leve	el of Service	А	
Analysis Period (min)			15					

	۶	$\mathbf{\hat{z}}$	1	Ť	Ŧ	-			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	M			र्भ	f,				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	14	193	177	34	23	23			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	15	210	192	37	25	25			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	459	38	50						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	459	38	50						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	97	80	88						
cM capacity (veh/h)	491	1035	1557						
Direction Lane #	FB 1	NB 1	SB 1						
Volume Total	225	229	50						
Volume Left	15	192	0						
Volume Right	210	0	25						
cSH	962	1557	1700						
Volume to Capacity	0.23	0.12	0.03						
Queue Length (ft)	23	11	0.00						
Control Delay (s)	9.9	6.6	0.0						
Lane LOS	Α	A	0.0						
Approach Delay (s)	9.9	6.6	0.0						
Approach LOS	A	0.0	0.0						
Intersection Summary									
			7 /						
Intersection Canacity I	Itilization		30 0%	10		of Sonvic	<u>م</u>	Λ	
Analysis Period (min)			15	- N				A	
			IJ						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	≯	\mathbf{F}	1	Ť	ŧ	4			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	W.			4	î,				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	0	46	48	0	0	0			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	50	52	0	0	0			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	104	0	0						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	104	0	0						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	95	97						
cM capacity (veh/h)	865	1085	1623						
Direction. Lane #	EB 1	NB 1	SB 1						
Volume Total	50	52	0						
Volume Left	0	52	0						
Volume Right	50	0	0						
cSH	1085	1623	1700						
Volume to Capacity	0.05	0.03	0.00						
Queue Length (ft)	4	2	0						
Control Delay (s)	8.5	7.3	0.0						
Lane LOS	А	А							
Approach Delay (s)	8.5	7.3	0.0						
Approach LOS	А								
Intersection Summary									
Average Delav			7.9						
Intersection Capacity U	tilization		13.3%	10	CU Leve	el of Servio	ce	А	
Analysis Period (min)			15						

HCM Signalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	٦	-	\rightarrow	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	•	1	5	ţ,		۲	t,			र्स	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.95			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.96	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1745		1676	1676			1699	1500
Flt Permitted	0.32	1.00	1.00	0.53	1.00		0.73	1.00			0.81	1.00
Satd. Flow (perm)	571	1765	1500	933	1745		1296	1676			1434	1500
Volume (vph)	488	364	92	3	255	20	69	7	4	25	7	442
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	530	396	100	3	277	22	75	8	4	27	8	480
RTOR Reduction (vph)	0	0	35	0	4	0	0	3	0	0	0	391
Lane Group Flow (vph)	530	396	65	3	295	0	75	9	0	0	35	89
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	31.8	31.8	31.8	12.5	12.5		9.1	9.1			9.1	9.1
Effective Green, g (s)	31.8	31.8	31.8	12.5	12.5		9.1	9.1			9.1	9.1
Actuated g/C Ratio	0.65	0.65	0.65	0.26	0.26		0.19	0.19			0.19	0.19
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	717	1148	975	238	446		241	312			267	279
v/s Ratio Prot	c0.23	0.22			0.17			0.01				
v/s Ratio Perm	c0.25		0.07	0.00			0.06				0.02	0.32
v/c Ratio	0.74	0.34	0.07	0.01	0.66		0.31	0.03			0.13	0.32
Uniform Delay, d1	5.5	3.9	3.1	13.6	16.3		17.2	16.3			16.6	17.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.2	0.0	0.0	3.6		0.7	0.0			0.2	0.7
Delay (s)	9.5	4.0	3.2	13.6	19.9		17.9	16.3			16.8	17.9
Level of Service	A	A	A	В	В		В	В			В	В
Approach Delay (s)		6.8			19.9			17.7			17.8	
Approach LOS		A			В			В			В	
Intersection Summary												
HCM Average Control [Delay		12.3	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci	ty ratio		0.94									
Actuated Cycle Length	(s)		48.9	S	Sum of l	ost time	(s)		8.0			
Intersection Capacity U	tilization		64.7%](CU Leve	el of Sei	vice		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	۶	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	el el		ሻሻ	•	1	1	<u></u>	1	ኘ	<u></u>	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1744		3252	1765	1500	1676	3353	1500	3252	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1744		3252	1765	1500	1676	3353	1500	3252	3353	1500
Volume (vph)	20	75	6	229	61	477	9	535	283	585	886	75
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	22	82	7	249	66	518	10	582	308	636	963	82
RTOR Reduction (vph)	0	4	0	0	0	0	0	0	194	0	0	48
Lane Group Flow (vph)	22	85	0	249	66	518	10	582	114	636	963	34
Turn Type	Prot			Prot		Free	Prot		pt+ov	Prot		Perm
Protected Phases	7	4		3	8		5	2	23	1	6	
Permitted Phases						Free						6
Actuated Green, G (s)	1.3	8.4		7.5	14.6	64.8	6.3	16.4	23.9	16.5	26.6	26.6
Effective Green, g (s)	1.3	8.4		7.5	14.6	64.8	6.3	16.4	23.9	16.5	26.6	26.6
Actuated g/C Ratio	0.02	0.13		0.12	0.23	1.00	0.10	0.25	0.37	0.25	0.41	0.41
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Lane Grp Cap (vph)	34	226		376	398	1500	163	849	553	828	1376	616
v/s Ratio Prot	0.01	0.05		c0.08	0.04		0.01	c0.17	0.21	0.20	c0.29	
v/s Ratio Perm						0.35						0.05
v/c Ratio	0.65	0.37		0.66	0.17	0.35	0.06	0.69	0.21	0.77	0.70	0.05
Uniform Delay, d1	31.5	25.8		27.4	20.2	0.0	26.6	21.9	14.0	22.4	15.8	11.5
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	35.3	1.0		4.3	0.2	0.6	0.2	2.3	0.2	4.3	1.6	0.0
Delay (s)	66.8	26.8		31.8	20.4	0.6	26.7	24.2	14.2	26.7	17.4	11.6
Level of Service	E	С		С	С	А	С	С	В	С	В	В
Approach Delay (s)		34.8			11.5			20.8			20.6	
Approach LOS		С			В			С			С	
Intersection Summary												
HCM Average Control D	elay		19.0	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capacit	y ratio		0.59									
Actuated Cycle Length (S)		64.8	S	Sum of l	ost time	(S)		8.0			
Intersection Capacity Ut	lization		56.8%](CU Leve	el of Ser	VICE		В			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	-	•	1	-											
Movement	EBL	EBT	WBT	WBR	SBL	SBR											
Lane Configurations		ب ا ا	el el		Y												
Sign Control		Stop	Stop		Stop												
Volume (vph)	216	177	103	12	15	175											
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92											
Hourly flow rate (vph)	235	192	112	13	16	190											
Direction, Lane #	EB 1	WB 1	SB 1				ĺ										
Volume Total (vph)	427	125	207														
Volume Left (vph)	235	0	16														
Volume Right (vph)	0	13	190														
Hadj (s)	0.1	0.0	-0.5														
Departure Headway (s)	4.7	4.6	4.6														
Degree Utilization, x	0.55	0.16	0.27														
Capacity (veh/h)	746	570	726														
Control Delay (s)	9.1	7.9	8.1														
Approach Delay (s)	9.1	7.9	8.1														
Approach LOS	А	А	А														
Intersection Summary																	
Delay			8.6														
HCM Level of Service			A														
Intersection Capacity Uti	ilization	l	48.1%	IC	CU Leve	el of Servic	Э		А	А	A	А	A	A	A	A	А
Analysis Period (min)			15														

	٦	$\mathbf{\hat{z}}$	1	Ť	Ŧ	~			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	¥			4	ĥ				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	16	141	183	45	49	11			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	17	153	199	49	53	12			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	506	59	65						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	506	59	65						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	96	85	87						
cM capacity (veh/h)	458	1006	1537						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	171	248	65						
Volume Left	17	199	0						
Volume Right	153	0	12						
cSH	897	1537	1700						
Volume to Capacity	0,19	0.13	0.04						
Queue Length (ft)	17	11	0						
Control Delay (s)	10.0	6.4	0.0						
Lane LOS	Α	A	0.0						
Approach Delay (s)	10.0	6.4	0.0						
Approach LOS	A								
Intersection Summary									
Average Delav			6.8						
Intersection Capacity U	tilization		36.7%	10	CU Leve	el of Servio	e	А	
Analysis Period (min)			15						
			.0						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	۶	\mathbf{F}	1	Ť	ŧ	∢			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	M			aî.	î,				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	0	60	61	0	0	0			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	0	65	66	0	0	0			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	133	0	0						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	133	0	0						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	100	94	96						
cM capacity (veh/h)	826	1085	1623						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	65	66	0						
Volume Left	0	66	0						
Volume Right	65	0	0						
cSH	1085	1623	1700						
Volume to Capacity	0.06	0.04	0.00						
Queue Length (ft)	5	3	0						
Control Delay (s)	8.5	7.3	0.0						
Lane LOS	А	А							
Approach Delay (s)	8.5	7.3	0.0						
Approach LOS	А								
Intersection Summary									
Average Delay			7.9						
Intersection Capacity U	Itilization		14.2%	I	CU Leve	el of Servic	e	А	
Analysis Period (min)			15						

HCM Signalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	٦	-	\rightarrow	4	+	•	1	Ť	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	•	1	5	f,		۲	4Î			र्स	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.95			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.98	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1750		1676	1670			1731	1500
Flt Permitted	0.32	1.00	1.00	0.58	1.00		0.75	1.00			0.94	1.00
Satd. Flow (perm)	568	1765	1500	1023	1750		1316	1670			1664	1500
Volume (vph)	351	247	91	5	346	20	89	8	5	6	10	327
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	382	268	99	5	376	22	97	9	5	7	11	355
RTOR Reduction (vph)	0	0	43	0	4	0	0	4	0	0	0	249
Lane Group Flow (vph)	382	268	56	5	394	0	97	10	0	0	18	106
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	32.2	32.2	32.2	15.9	15.9		17.1	17.1			17.1	17.1
Effective Green, g (s)	32.2	32.2	32.2	15.9	15.9		17.1	17.1			17.1	17.1
Actuated g/C Ratio	0.56	0.56	0.56	0.28	0.28		0.30	0.30			0.30	0.30
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	557	992	843	284	486		393	498			497	448
v/s Ratio Prot	c0.15	0.15			c0.23			0.01				
v/s Ratio Perm	0.24		0.07	0.00			0.07				0.01	0.24
v/c Ratio	0.69	0.27	0.07	0.02	0.81		0.25	0.02			0.04	0.24
Uniform Delay, d1	13.6	6.5	5.7	15.0	19.3		15.2	14.2			14.3	15.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	3.5	0.1	0.0	0.0	9.9		1.5	0.1			0.1	1.2
Delay (s)	17.1	6.6	5.7	15.1	29.2		16.7	14.3			14.4	16.4
Level of Service	В	А	А	В	С		В	В			В	В
Approach Delay (s)		11.9			29.1			16.4			16.3	
Approach LOS		В			С			В			В	
Intersection Summary												
HCM Average Control [Delay		17.4	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci	ty ratio		0.72									
Actuated Cycle Length	(s)		57.3	S	Sum of I	ost time	(s)		8.0			
Intersection Capacity U	tilization		62.9%](CU Leve	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 15: Moon Meadows & US 16

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations N P P <t< th=""><th></th><th>≯</th><th>-</th><th>$\mathbf{\hat{z}}$</th><th>4</th><th>+</th><th>•</th><th>1</th><th>1</th><th>۲</th><th>1</th><th>ŧ</th><th>~</th></t<>		≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	۲	1	ŧ	~
Lane Configurations T	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Ideal Flow (vphp) 1800 100 100 100<	Lane Configurations	ľ	el 🕴		ሻሻ	•	1	1	<u></u>	1	ሻሻ	<u></u>	1
Total Lost time (s) 4.0<	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor 1.00 1.00 0.97 1.00 1.00 1.00 0.85 1.00 0.97 0.95 1.00 Fit Protected 0.95 1.00 0.95 1.00 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.85 Fit Protected 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 Satd. Flow (pern) 1676 1694 3252 1765 1500 1676 3333 1500 3252 3353 1500 Satd. Flow (perm) 1676 1694 3252 1765 1500 1676 3333 1500 3252 3353 1500 Satd. Flow (perm) 1676 1694 3252 1765 1500 1676 3333 1500 3252 3353 1500 Volume (vph) 139 55 20 228 61 473 1 685 206 428 509 27 Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Frt 1.00 0.96 1.00 0.85 1.00 0.85 1.00 0.85 1.00 0.085 1.00 0.085 1.00 0.085 1.00 0.085 1.00 0.085 1.00 0.085 1.00 0.05 1.00 0.95 1.00 0.05 1.00 0.95 1.00 0.05 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Flt Protected 0.95 1.00 0.95 1.00 0.95 1.00 1.00 1.00 1.00 1.00 0.02 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 </td <td>Frt</td> <td>1.00</td> <td>0.96</td> <td></td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>1.00</td> <td>0.85</td> <td>1.00</td> <td>1.00</td> <td>0.85</td>	Frt	1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Satd. Flow (prot) 1676 1694 3252 1765 1500 1676 3353 1500 3252 3353 1500 Flt Permitted 0.95 1.00 0.95 1.00 1.00 0.95 1.00 0.95 1.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 0.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00 1.00 0.95 1.00	Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Flt Permitted 0.95 1.00 0.95 1.00 1.00 0.92 </td <td>Satd. Flow (prot)</td> <td>1676</td> <td>1694</td> <td></td> <td>3252</td> <td>1765</td> <td>1500</td> <td>1676</td> <td>3353</td> <td>1500</td> <td>3252</td> <td>3353</td> <td>1500</td>	Satd. Flow (prot)	1676	1694		3252	1765	1500	1676	3353	1500	3252	3353	1500
Satd. Flow (perm) 1676 1694 3252 1765 1500 1676 3353 1500 3252 3353 1500 Volume (vph) 139 55 20 228 61 473 1 685 206 428 509 27 Peak-hour factor, PHF 0.92 <	Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Volume (vph) 139 55 20 228 61 473 1 685 206 428 509 27 Peak-hour factor, PHF 0.92	Satd. Flow (perm)	1676	1694		3252	1765	1500	1676	3353	1500	3252	3353	1500
Peak-hour factor, PHF 0.92 0.91 115 6 1 15 7 4 3 8 5 2 3 1 6 7 9 9.99 9.92 9.92 9.92 9.92 9.92 9.92 9.92 0.51	Volume (vph)	139	55	20	228	61	473	1	685	206	428	509	27
Adj, Flow (vph) 151 60 22 248 66 514 1 745 224 465 553 29 RTOR Reduction (vph) 0 0 0 0 0 0 0 0 196 0 0 14 Lane Group Flow (vph) 151 62 0 248 66 514 1 745 28 465 553 15 Turn Type Prot Prot Free Prot Over Prot Perm Protected Phases 7 4 3 8 5 2 3 1 6 Permitted Phases 7 4 3 8 5 2 3 1 6 Pretive Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0 4.0 <td< td=""><td>Peak-hour factor, PHF</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td><td>0.92</td></td<>	Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
RTOR Reduction (vph) 0 20 0 0 0 0 0 196 0 0 14 Lane Group Flow (vph) 151 62 0 248 66 514 1 745 28 465 553 15 Turn Type Prot Prot Free Prot Over Prot Perm Protected Phases 7 4 3 8 5 2 3 1 6 Permitted Phases 7 4 65 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Effective Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	Adj. Flow (vph)	151	60	22	248	66	514	1	745	224	465	553	29
Lane Group Flow (vph) 151 62 0 248 66 514 1 745 28 465 553 15 Turn Type Prot Prot Prot Free Prot Over Prot Permited Phases Permitted Phases 7 4 3 8 5 2 3 1 6 Actuated Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated G/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 <td>RTOR Reduction (vph)</td> <td>0</td> <td>20</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>196</td> <td>0</td> <td>0</td> <td>14</td>	RTOR Reduction (vph)	0	20	0	0	0	0	0	0	196	0	0	14
Turn Type Prot Free Prot Over Prot Perm Protected Phases 7 4 3 8 5 2 3 1 6 Permitted Phases Free 6 6 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0	Lane Group Flow (vph)	151	62	0	248	66	514	1	745	28	465	553	15
Protected Phases 7 4 3 8 5 2 3 1 6 Permitted Phases Free Free 6 Actuated Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Effective Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0	Turn Type	Prot			Prot		Free	Prot		Over	Prot		Perm
Permitted Phases Free 6 Actuated Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Effective Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.12 0.51 0.57 0.30 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	Protected Phases	7	4		3	8		5	2	3	1	6	
Actuated Green, G (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Effective Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 0.51 Clearance Time (s) 4.0 <td>Permitted Phases</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Free</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6</td>	Permitted Phases						Free						6
Effective Green, g (s) 6.1 5.2 7.4 6.5 59.2 0.7 15.8 7.4 14.8 29.9 29.9 Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0	Actuated Green, G (s)	6.1	5.2		7.4	6.5	59.2	0.7	15.8	7.4	14.8	29.9	29.9
Actuated g/C Ratio 0.10 0.09 0.12 0.11 1.00 0.01 0.27 0.12 0.25 0.51 0.51 Clearance Time (s) 4.0 <t< td=""><td>Effective Green, g (s)</td><td>6.1</td><td>5.2</td><td></td><td>7.4</td><td>6.5</td><td>59.2</td><td>0.7</td><td>15.8</td><td>7.4</td><td>14.8</td><td>29.9</td><td>29.9</td></t<>	Effective Green, g (s)	6.1	5.2		7.4	6.5	59.2	0.7	15.8	7.4	14.8	29.9	29.9
Clearance Time (s) 4.0 </td <td>Actuated g/C Ratio</td> <td>0.10</td> <td>0.09</td> <td></td> <td>0.12</td> <td>0.11</td> <td>1.00</td> <td>0.01</td> <td>0.27</td> <td>0.12</td> <td>0.25</td> <td>0.51</td> <td>0.51</td>	Actuated g/C Ratio	0.10	0.09		0.12	0.11	1.00	0.01	0.27	0.12	0.25	0.51	0.51
Vehicle Extension (s) 3.0	Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Lane Grp Cap (vph) 173 149 407 194 1500 20 895 188 813 1693 758 v/s Ratio Prot 0.09 0.05 0.08 0.04 0.00 c0.22 c0.15 c0.14 0.16 v/s Ratio Perm 0.34 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 v/c Ratio 0.87 0.42 0.61 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 Uniform Delay, d1 26.2 25.6 24.5 24.4 0.0 28.9 20.5 23.1 19.4 8.7 7.3 Progression Factor 1.00	Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
v/s Ratio Prot 0.09 0.05 0.08 0.04 0.00 c0.22 c0.15 c0.14 0.16 v/s Ratio Perm 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 v/c Ratio 0.87 0.42 0.61 0.34 0.05 0.83 0.15 0.57 0.33 0.02 Uniform Delay, d1 26.2 25.6 24.5 24.4 0.0 28.9 20.5 23.1 19.4 8.7 7.3 Progression Factor 1.00 <td>Lane Grp Cap (vph)</td> <td>173</td> <td>149</td> <td></td> <td>407</td> <td>194</td> <td>1500</td> <td>20</td> <td>895</td> <td>188</td> <td>813</td> <td>1693</td> <td>758</td>	Lane Grp Cap (vph)	173	149		407	194	1500	20	895	188	813	1693	758
v/s Ratio Perm 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 v/c Ratio 0.87 0.42 0.61 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 Uniform Delay, d1 26.2 25.6 24.5 24.4 0.0 28.9 20.5 23.1 19.4 8.7 7.3 Progression Factor 1.00 <td< td=""><td>v/s Ratio Prot</td><td>0.09</td><td>0.05</td><td></td><td>0.08</td><td>0.04</td><td></td><td>0.00</td><td>c0.22</td><td>c0.15</td><td>c0.14</td><td>0.16</td><td></td></td<>	v/s Ratio Prot	0.09	0.05		0.08	0.04		0.00	c0.22	c0.15	c0.14	0.16	
v/c Ratio 0.87 0.42 0.61 0.34 0.34 0.05 0.83 0.15 0.57 0.33 0.02 Uniform Delay, d1 26.2 25.6 24.5 24.4 0.0 28.9 20.5 23.1 19.4 8.7 7.3 Progression Factor 1.00 <td>v/s Ratio Perm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.02</td>	v/s Ratio Perm						0.34						0.02
Uniform Delay, d1 26.2 25.6 24.5 24.4 0.0 28.9 20.5 23.1 19.4 8.7 7.3 Progression Factor 1.00	v/c Ratio	0.87	0.42		0.61	0.34	0.34	0.05	0.83	0.15	0.57	0.33	0.02
Progression Factor 1.00 1	Uniform Delay, d1	26.2	25.6		24.5	24.4	0.0	28.9	20.5	23.1	19.4	8.7	7.3
Incremental Delay, d2 35.1 1.9 2.6 1.0 0.6 1.0 6.7 0.4 1.0 0.1 0.0 Delay (s) 61.2 27.4 27.1 25.4 0.6 30.0 27.1 23.5 20.4 8.8 7.3 Level of Service E C C C A C C C A A Approach Delay (s) 49.3 10.5 26.3 13.9 13.9 Approach LOS D B C B B C B Intersection Summary 19.6 HCM Level of Service B A	Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Delay (s) 61.2 27.4 27.1 25.4 0.6 30.0 27.1 23.5 20.4 8.8 7.3 Level of Service E C C C A C C C A A Approach Delay (s) 49.3 10.5 26.3 13.9 Approach LOS D B C B Intersection Summary HCM Average Control Delay 19.6 HCM Level of Service B HCM Volume to Capacity ratio 0.72 Actuated Cycle Length (s) 59.2 Sum of lost time (s) 12.0 Intersection Capacity Utilization 57.7% ICU Level of Service B ICU Level of Service B	Incremental Delay, d2	35.1	1.9		2.6	1.0	0.6	1.0	6.7	0.4	1.0	0.1	0.0
Level of ServiceECCCACCCCAAApproach Delay (s)49.310.526.313.9Approach LOSDBCBIntersection SummaryHCM Average Control Delay19.6HCM Level of ServiceBHCM Volume to Capacity ratio0.720.720.72Actuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceB	Delay (s)	61.2	27.4		27.1	25.4	0.6	30.0	27.1	23.5	20.4	8.8	7.3
Approach Delay (s)49.310.526.313.9Approach LOSDBCBIntersection SummaryHCM Average Control Delay19.6HCM Level of ServiceBHCM Volume to Capacity ratio0.72CCActuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceB	Level of Service	E	С		С	С	А	С	С	С	С	А	A
Approach LOSDBCBIntersection SummaryHCM Average Control Delay19.6HCM Level of ServiceBHCM Volume to Capacity ratio0.72Actuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceB	Approach Delay (s)		49.3			10.5			26.3			13.9	
Intersection Summary HCM Average Control Delay 19.6 HCM Level of Service B HCM Volume to Capacity ratio 0.72 Actuated Cycle Length (s) 59.2 Sum of lost time (s) 12.0 Intersection Capacity Utilization 57.7% ICU Level of Service B	Approach LOS		D			В			С			В	
HCM Average Control Delay19.6HCM Level of ServiceBHCM Volume to Capacity ratio0.72Actuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceB	Intersection Summary												
HCM Volume to Capacity ratio0.72Actuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceBAnalyzia Dariad (min)15	HCM Average Control D	elay		19.6	F	ICM Lev	vel of Se	ervice		В			
Actuated Cycle Length (s)59.2Sum of lost time (s)12.0Intersection Capacity Utilization57.7%ICU Level of ServiceBApply size Derived (min)15	HCM Volume to Capacit	y ratio		0.72	_					1.5.5			
Intersection Capacity Utilization 57.7% ICU Level of Service B	Actuated Cycle Length (S)		59.2	S	Sum of le	ost time	(S)		12.0			
	Intersection Capacity Ut	lization		57.7%](JU Leve	el of Ser	VICE		В			
Analysis Period (IIIII) 15	Analysis Period (min)			15									

MovementEBLEBTWBTWBRSBLSBRLane ConfigurationsIIIISign ControlStopStopStopVolume (vph)19464157172214Peak Hour Factor0.920.920.920.920.920.92Hourly flow rate (vph)21170171182233Direction, Lane #EB 1WB 1SB 1Volume Total (vph)280189235Volume Total (vph)280189235Volume Left (vph)21102Volume Left (vph)21102Volume Left (vph)21102Volume Left (vph)018233EEEVolume Right (vph)018233EEEDegree Utilization, x0.380.240.29EECapacity (veh/h)712586778EEControl Delay (s)8.58.07.9EEApproach LOSAAAEEDelay8.2EEEEEHCM Level of ServiceAICU Level of ServiceAAnalysis Period (min)1515EE		≯	-	+	•	1	∢	
Lane Configurations Image: Control Stop Stop Stop Stop Stop Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Total (vph) 280 189 233	Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Sign Control Stop Stop Stop Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Total (vph) 280 189 233 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Volume Left (vph) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach LOS A A Approach LOS A A A A A A	Lane Configurations		र्च	el 🗍		Y		
Volume (vph) 194 64 157 17 2 214 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 2 233 Volume Total (vph) 280 189 235 <	Sign Control		Stop	Stop		Stop		
Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 2 8.2 HCM Level of Service A A Analysis Period (min) 15	Volume (vph)	194	64	157	17	2	214	
Hourly flow rate (vph) 211 70 171 18 2 233 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 ICU Level of Service A Active I of Service A A ICU Level of Service Analysis Period (min) 15 ICU Level of Service	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Hourly flow rate (vph)	211	70	171	18	2	233	
Volume Total (vph) 280 189 235 Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Direction, Lane #	EB 1	WB 1	SB 1				
Volume Left (vph) 211 0 2 Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary Example Example Example Delay 8.2 4.10 48.8% ICU Level of Service Analysis Period (min) 15 15 15 15	Volume Total (vph)	280	189	235				
Volume Right (vph) 0 18 233 Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 200 8.2 HCM Level of Service A A Analysis Period (min) 15 15	Volume Left (vph)	211	0	2				
Hadj (s) 0.2 0.0 -0.6 Departure Headway (s) 4.8 4.6 4.4 Degree Utilization, x 0.38 0.24 0.29 Capacity (veh/h) 712 586 778 Control Delay (s) 8.5 8.0 7.9 Approach Delay (s) 8.5 8.0 7.9 Approach LOS A A A Intersection Summary 8.2 1000000000000000000000000000000000000	Volume Right (vph)	0	18	233				
Departure Headway (s)4.84.64.4Degree Utilization, x0.380.240.29Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Hadj (s)	0.2	0.0	-0.6				
Degree Utilization, x0.380.240.29Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Departure Headway (s)	4.8	4.6	4.4				
Capacity (veh/h)712586778Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Degree Utilization, x	0.38	0.24	0.29				
Control Delay (s)8.58.07.9Approach Delay (s)8.58.07.9Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Capacity (veh/h)	712	586	778				
Approach Delay (s)8.58.07.9Approach LOSAAAIntersection Summary8.2Delay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Control Delay (s)	8.5	8.0	7.9				
Approach LOSAAAIntersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Approach Delay (s)	8.5	8.0	7.9				
Intersection SummaryDelay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Approach LOS	А	А	А				
Delay8.2HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Intersection Summary							
HCM Level of ServiceAIntersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	Delay			8.2				
Intersection Capacity Utilization48.8%ICU Level of ServiceAnalysis Period (min)15	HCM Level of Service			А				
Analysis Period (min) 15	Intersection Capacity Ut	ilization	1	48.8%	IC	CU Leve	el of Service	
	Analysis Period (min)			15				

	۶	$\mathbf{\hat{z}}$	1	Ť	Ŧ	-		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	M			र्भ	f,			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	14	193	177	34	23	23		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	15	210	192	37	25	25		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	459	38	50					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	459	38	50					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	97	80	88					
cM capacity (veh/h)	491	1035	1557					
Direction Lane #	FB 1	NB 1	SB 1					
Volume Total	225	229	50					
Volume Left	15	192	0					
Volume Right	210	0	25					
cSH	962	1557	1700					
Volume to Capacity	0.23	0.12	0.03					
Queue Length (ft)	23	11	0.00					
Control Delay (s)	9.9	6.6	0.0					
Lane LOS	Α	A	0.0					
Approach Delay (s)	9.9	6.6	0.0					
Approach LOS	A	0.0	0.0					
Intersection Summary								
			7 /					
Intersection Canacity I	Itilization		30 0%	10		of Sonvic	Λ	
Analysis Period (min)			15	- N			A	
			IJ					

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٦	$\mathbf{\hat{z}}$	1	Ť	ŧ	~		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	M			4	î,			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	0	46	48	0	0	0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	50	52	0	0	0		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	104	0	0					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	104	0	0					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	95	97					
cM capacity (veh/h)	865	1085	1623					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	50	52	0					
Volume Left	0	52	0					
Volume Right	50	0	0					
cSH	1085	1623	1700					
Volume to Capacity	0.05	0.03	0.00					
Queue Length (ft)	4	2	0					
Control Delay (s)	8.5	7.3	0.0					
Lane LOS	A	A						
Approach Delay (s)	8.5	7.3	0.0					
Approach LOS	А							
Intersection Summary								
Average Delav			7.9					
Intersection Capacity U	tilization		13.3%	10	CU Leve	el of Servic	e	А
Analysis Period (min)			15				-	

HCM Signalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	٦	-	\rightarrow	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	5	•	1	5	ţ,		۲	t,			र्स	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.95			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.96	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1745		1676	1676			1699	1500
Flt Permitted	0.32	1.00	1.00	0.53	1.00		0.73	1.00			0.81	1.00
Satd. Flow (perm)	571	1765	1500	933	1745		1296	1676			1434	1500
Volume (vph)	488	364	92	3	255	20	69	7	4	25	7	442
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	530	396	100	3	277	22	75	8	4	27	8	480
RTOR Reduction (vph)	0	0	35	0	4	0	0	3	0	0	0	391
Lane Group Flow (vph)	530	396	65	3	295	0	75	9	0	0	35	89
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	31.8	31.8	31.8	12.5	12.5		9.1	9.1			9.1	9.1
Effective Green, g (s)	31.8	31.8	31.8	12.5	12.5		9.1	9.1			9.1	9.1
Actuated g/C Ratio	0.65	0.65	0.65	0.26	0.26		0.19	0.19			0.19	0.19
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	717	1148	975	238	446		241	312			267	279
v/s Ratio Prot	c0.23	0.22			0.17			0.01				
v/s Ratio Perm	c0.25		0.07	0.00			0.06				0.02	0.32
v/c Ratio	0.74	0.34	0.07	0.01	0.66		0.31	0.03			0.13	0.32
Uniform Delay, d1	5.5	3.9	3.1	13.6	16.3		17.2	16.3			16.6	17.2
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.2	0.0	0.0	3.6		0.7	0.0			0.2	0.7
Delay (s)	9.5	4.0	3.2	13.6	19.9		17.9	16.3			16.8	17.9
Level of Service	A	A	A	В	В		В	В			В	В
Approach Delay (s)		6.8			19.9			17.7			17.8	
Approach LOS		A			В			В			В	
Intersection Summary												
HCM Average Control [Delay		12.3	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci	ty ratio		0.94									
Actuated Cycle Length	(s)		48.9	S	Sum of l	ost time	(s)		8.0			
Intersection Capacity U	tilization		64.7%](CU Leve	el of Sei	vice		С			
Analysis Period (min)			15									
c Critical Lane Group												

HCM Signalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4Î		ሻሻ	†	1	۲	^	1	ካካ	^	7
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	0.97	0.95	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1739		3252	1765	1500	1676	3353	1500	3252	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1739		3252	1765	1500	1676	3353	1500	3252	3353	1500
Volume (vph)	27	75	8	229	61	477	12	720	283	585	1192	101
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	82	9	249	66	518	13	783	308	636	1296	110
RTOR Reduction (vph)	0	4	0	0	0	0	0	0	278	0	0	56
Lane Group Flow (vph)	29	87	0	249	66	518	13	783	30	636	1296	54
Turn Type	Prot			Prot		Free	Prot		Over	Prot		Perm
Protected Phases	7	4		3	8		5	2	3	1	6	
Permitted Phases						Free						6
Actuated Green, G (s)	2.1	9.1		7.3	14.3	75.6	6.4	21.9	7.3	21.3	36.8	36.8
Effective Green, g (s)	2.1	9.1		7.3	14.3	75.6	6.4	21.9	7.3	21.3	36.8	36.8
Actuated g/C Ratio	0.03	0.12		0.10	0.19	1.00	0.08	0.29	0.10	0.28	0.49	0.49
Clearance Time (s)	4.0	4.0		4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	47	209		314	334	1500	142	971	145	916	1632	730
v/s Ratio Prot	0.02	0.05		0.08	0.04		0.01	c0.23	c0.21	0.20	c0.39	
v/s Ratio Perm						0.35						0.07
v/c Ratio	0.62	0.41		0.79	0.20	0.35	0.09	0.81	0.21	0.69	0.79	0.07
Uniform Delay, d1	36.4	30.8		33.4	25.8	0.0	31.9	24.9	31.5	24.2	16.2	10.3
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	21.7	1.3		12.9	0.3	0.6	0.3	5.0	0.7	2.3	2.8	0.0
Delay (s)	58.1	32.1		46.3	26.1	0.6	32.2	29.9	32.2	26.5	19.0	10.4
Level of Service	E	С		D	С	A	С	С	С	С	В	В
Approach Delay (s)		38.4			16.3			30.5			20.9	
Approach LOS		D			В			С			С	
Intersection Summary				-			-					
HCM Average Control D	Delay		23.1	F	ICM Lev	vel of Se	ervice		С			
HCM Volume to Capacit	ty ratio		0.84									
Actuated Cycle Length ((S)		75.6	S	Sum of le	ost time	(s)		8.0			
Intersection Capacity Ut	lization		62.2%](CU Leve	el of Ser	Vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

Movement EBL EBT WBT WBR SBL SBR Lane Configurations Image: Control Stop Stop Stop Stop Stop Volume (vph) 216 177 103 12 15 175 Peak Hour Factor 0.92 </th <th></th> <th>≯</th> <th>-</th> <th>+</th> <th>•</th> <th>1</th> <th>1</th> <th></th>		≯	-	+	•	1	1	
Lane Configurations Image: Control Stop Stop Stop Stop Stop Volume (vph) Stop 16 Stop Stop Stop Stop Volume (vph) Stop 216 Stop 20.92 O.92	Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Sign Control Stop Stop Stop Volume (vph) 216 177 103 12 15 175 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 235 192 112 13 16 190 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 427 125 207 Volume Total (vph) 427 125 207 Volume Left (vph) 235 0 16 Volume Left (vph) 0 13 190 Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6	Lane Configurations		ę	ef 👘		Y		
Volume (vph) 216 177 103 12 15 175 Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 235 192 112 13 16 190 Direction, Lane # EB 1 WB 1 SB 1 100 100 100 Direction, Lane # EB 1 WB 1 SB 1 100 100 100 Volume Total (vph) 427 125 207 112 13 16 190 Volume Left (vph) 235 0 16 100 100 100 100 100 100 100 100 100 112 13 100 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 112 113 110 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111	Sign Control		Stop	Stop		Stop		
Peak Hour Factor 0.92	Volume (vph)	216	177	103	12	15	175	
Hourly flow rate (vph) 235 192 112 13 16 190 Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 427 125 207 Volume Left (vph) 235 0 16 Volume Right (vph) 0 13 190 Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6 Degree Utilization, x 0.55 0.16 0.27 Capacity (veh/h) 746 570 726 Control Delay (s) 9.1 7.9 8.1 Approach Delay (s) 9.1 7.9 8.1 Approach LOS A A A Intersection Summary 8.6 100 100 Delay 8.6 100 100 100 Hersection Capacity Utilization 48.1% ICU Level of Service Analysis Period (min) 15 15	Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Direction, Lane # EB 1 WB 1 SB 1 Volume Total (vph) 427 125 207 Volume Left (vph) 235 0 16 Volume Right (vph) 0 13 190 Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6 Degree Utilization, x 0.55 0.16 0.27 Capacity (veh/h) 746 570 726 Control Delay (s) 9.1 7.9 8.1 Approach Delay (s) 9.1 7.9 8.1 Approach LOS A A A Intersection Summary 201 8.6 HCM Level of Service A A Analysis Period (min) 15 1000 Level of Service	Hourly flow rate (vph)	235	192	112	13	16	190	
Volume Total (vph) 427 125 207 Volume Left (vph) 235 0 16 Volume Right (vph) 0 13 190 Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6 Degree Utilization, x 0.55 0.16 0.27 Capacity (veh/h) 746 570 726 Control Delay (s) 9.1 7.9 8.1 Approach Delay (s) 9.1 7.9 8.1 Approach LOS A A A Intersection Summary Delay 8.6 HCM Level of Service A A Analysis Period (min) 15 ICU Level of Service	Direction, Lane #	EB 1	WB 1	SB 1				
Volume Left (vph) 235 0 16 Volume Right (vph) 0 13 190 Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6 Degree Utilization, x 0.55 0.16 0.27 Capacity (veh/h) 746 570 726 Control Delay (s) 9.1 7.9 8.1 Approach Delay (s) 9.1 7.9 8.1 Approach LOS A A A Intersection Summary 8.6 1000000000000000000000000000000000000	Volume Total (vph)	427	125	207				
Volume Right (vph)013190Hadj (s)0.10.0-0.5Departure Headway (s)4.74.64.6Degree Utilization, x0.550.160.27Capacity (veh/h)746570726Control Delay (s)9.17.98.1Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryDelay8.6HCM Level of ServiceAAnalysis Period (min)15	Volume Left (vph)	235	0	16				
Hadj (s) 0.1 0.0 -0.5 Departure Headway (s) 4.7 4.6 4.6 Degree Utilization, x 0.55 0.16 0.27 Capacity (veh/h) 746 570 726 Control Delay (s) 9.1 7.9 8.1 Approach Delay (s) 9.1 7.9 8.1 Approach LOS A A A Intersection Summary Delay 8.6 HCM Level of Service A A Intersection Capacity Utilization 48.1% ICU Level of Service Analysis Period (min) 15 15	Volume Right (vph)	0	13	190				
Departure Headway (s)4.74.64.6Degree Utilization, x0.550.160.27Capacity (veh/h)746570726Control Delay (s)9.17.98.1Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryEndDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAAnalysis Period (min)15	Hadj (s)	0.1	0.0	-0.5				
Degree Utilization, x0.550.160.27Capacity (veh/h)746570726Control Delay (s)9.17.98.1Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Departure Headway (s)	4.7	4.6	4.6				
Capacity (veh/h)746570726Control Delay (s)9.17.98.1Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryEndDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Degree Utilization, x	0.55	0.16	0.27				
Control Delay (s)9.17.98.1Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryEndDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Capacity (veh/h)	746	570	726				
Approach Delay (s)9.17.98.1Approach LOSAAAIntersection SummaryDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)	Control Delay (s)	9.1	7.9	8.1				
Approach LOSAAAIntersection SummaryDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Approach Delay (s)	9.1	7.9	8.1				
Intersection SummaryDelay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Approach LOS	А	А	А				
Delay8.6HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Intersection Summary							
HCM Level of ServiceAIntersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	Delay			8.6				
Intersection Capacity Utilization48.1%ICU Level of ServiceAnalysis Period (min)15	HCM Level of Service			А				
Analysis Period (min) 15	Intersection Capacity Ut	ilization	l	48.1%	IC	CU Leve	el of Service	
	Analysis Period (min)			15				

	٦	$\mathbf{\hat{z}}$	1	1	Ŧ	-			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	Y			ર્સ	ĥ				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	16	141	183	45	49	11			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	17	153	199	49	53	12			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	506	59	65						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	506	59	65						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	96	85	87						
cM capacity (veh/h)	458	1006	1537						
Direction Lane #	FR 1	NR 1	SB 1						
Volume Total	171	248	65						
Volume Left	17	199	00						
Volume Right	153	0	12						
cSH	897	1537	1700						
Volume to Canacity	0.10	0.13	0.04						
Queue Length (ft)	17	11	0.04						
Control Delay (s)	10.0	64	0.0						
Lane LOS	Δ	Δ	0.0						
Approach Delay (s)	10.0	64	0.0						
Approach LOS	A	0.7	0.0						
Intersection Summary									
			6.8						
Intersection Canacity L	Itilization		36.7%	10		of Service	2	٨	
Analysis Period (min)	auon		15	- N			,	A	
Andiysis Fellou (IIIII)			10						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٦	$\mathbf{\hat{z}}$	1	Ť	ŧ	<		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	M			4	î,			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	0	60	61	0	0	0		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	0	65	66	0	0	0		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	133	0	0					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	133	0	0					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	100	94	96					
cM capacity (veh/h)	826	1085	1623					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	65	66	0					
Volume Left	0	66	0					
Volume Right	65	0	0					
cSH	1085	1623	1700					
Volume to Capacity	0.06	0.04	0.00					
Queue Length (ft)	5	3	0					
Control Delay (s)	8.5	7.3	0.0					
Lane LOS	А	А						
Approach Delay (s)	8.5	7.3	0.0					
Approach LOS	А							
Intersection Summary								
Average Delay			7.9					
Intersection Capacity U	tilization		14.2%	10	CU Leve	el of Service	Э	А
Analysis Period (min)			15					