Wal-Mart

US 16 / Sammis Trail / Moon Meadows

Draft Traffic Impact Study

(Supplemental Report to the December 23rd 2005 Study to include <u>connection</u> of Rearage Road to Catron Boulevard)

Rapid City, South Dakota

Prepared for

Wal-Mart Stores, Inc.

At the request of BFA, Inc.

Prepared by HDR Engineering, Inc.

DECEMBER 28TH 2005

HORE COMPANY Many Solutions ⁵⁴⁴	Memo
To: City of Rapid City Planning Staff (Vicki Fisc	cher, Marcia Elkins, and John Less) & SDDOT (Monica Heller)
From: Jason Kjenstad-HDR	Project: Wal*Mart Study – Rapid City, SD
CC: Joe Feldmann, BFA	
Date: 12-28-2005	Job No: 20494

Traffic Impact Analysis 12-28-05 (Updated 12-23-05 Study to review Rearage Road Connection to Catron Boulevard)

Study Objective

The objective of this traffic impact study is to determine if the US 16 / Moon Meadows / Sammis Trail intersection, Catron Boulevard / Rearage Road intersection, and internal proposed intersections can support the proposed traffic generated by a proposed Wal*Mart Superstore.

Executive Summary

A traffic impact analysis was performed for a new mixed-use development near US Highway 16 and Sammis Trail in Rapid City, SD. This mixed-use development features a Wal*Mart, a Hotel, 4 retail lots, and 300 single-family detached housing lots. A level of service (LOS) analysis was preformed for the intersection of US 16 and Sammis Trail, Catron Boulevard and Rearage Road, as well as five additional intersections. The analysis revealed that a signal is warranted at the intersection of US 16 / Sammis Road / Moon Meadows Drive with a single left-turn lane on the southbound approach and a dual left-turn for the westbound approach. An additional signal is required at the intersection of Sammis Trail at the Main Access Road, along with exclusive left and right-turn lanes on the eastbound approach (assuming full site development). The recommendation for a signal at the Main Access Road is to allow clearing of the east approach to prevent queuing that would negatively impact the US 16 / Sammis Trail intersection. The analysis further revealed that a signal will be required at Catron Boulevard and Rearage Road intersection assuming a fully developed site to improve the intersection to LOS C or better. The recommendation for a signal assumes the existing geometrics on Catron Boulevard with an additional westbound left-turn lane only. A westbound exclusive left-turn lane will be required opening day at the Catron Boulevard / Rearage Road intersection. A signal at Sammis Trail/Main Access Road and Catron Boulevard/Rearage Road does not meet signal warrant criteria opening day therefore should not be installed until it is warranted. All other intersections operate at LOS C or better.

Driveway locations as indicated on the figures are the recommended locations determined from this traffic analysis. It is recommended that Sammis Trail have limited access since it is classified as an arterial for the City of Rapid City.

The intersection of Sammis Trail / Rearage Road operates at an acceptable LOS and does not warrant a traffic signal.

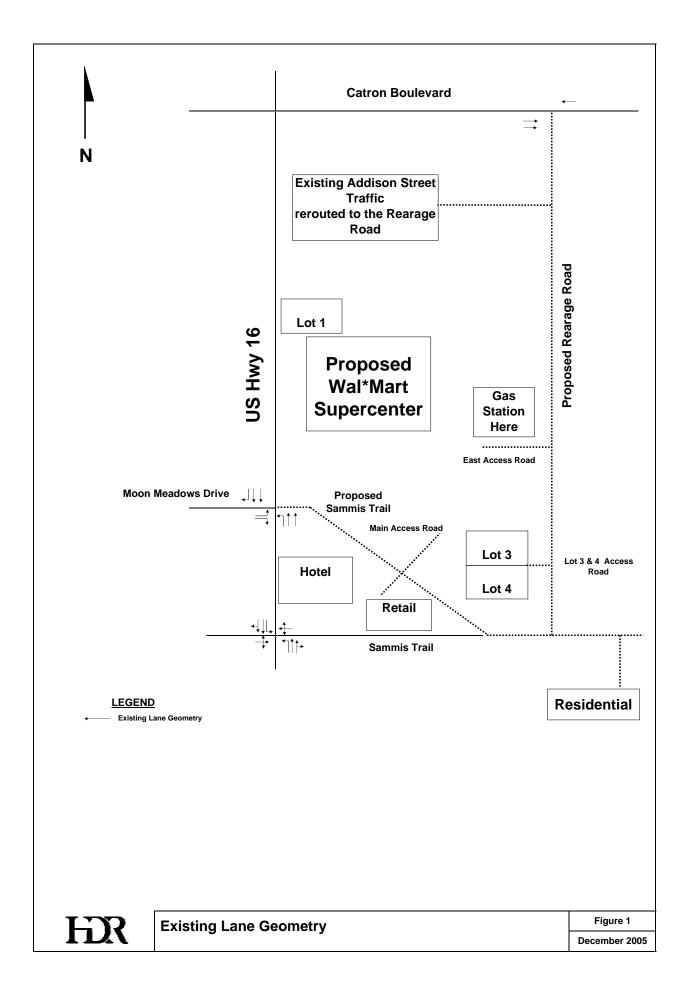
It is recommended that the rearage road be constructed as a three-lane section from Sammis Trail to Catron Boulevard. The continuous left-turn lane should be channelized at major intersections along the rearage road.

Several types of signal control options were evaluated with the recommended lane geometry to determine if queuing along Sammis Trail would have a negative impact at the US 16 / Sammis Trail intersection and Sammis Trail / Main Access Road. Simulation results revealed that protected left-turns operate with no adverse impacts causing unacceptable queue lengths. SimTRAFFIC also verified the length of the recommended storage lanes were sufficient. It is recommended the detector loops be placed according to the SDDOT recommended procedure or video detection be used to allow the signals to operate fully-actuated. Signal conduit should be placed beneath the proposed intersection of Sammis Trail / Main Access to prepare for the future installation of a signal.

Background

The proposed development will be located at the southwest corner of the Commerford Ranch Development Park near US 16, Moon Meadows Drive and Sammis Trail. The land uses included in the proposal are shown in **Table 1**.

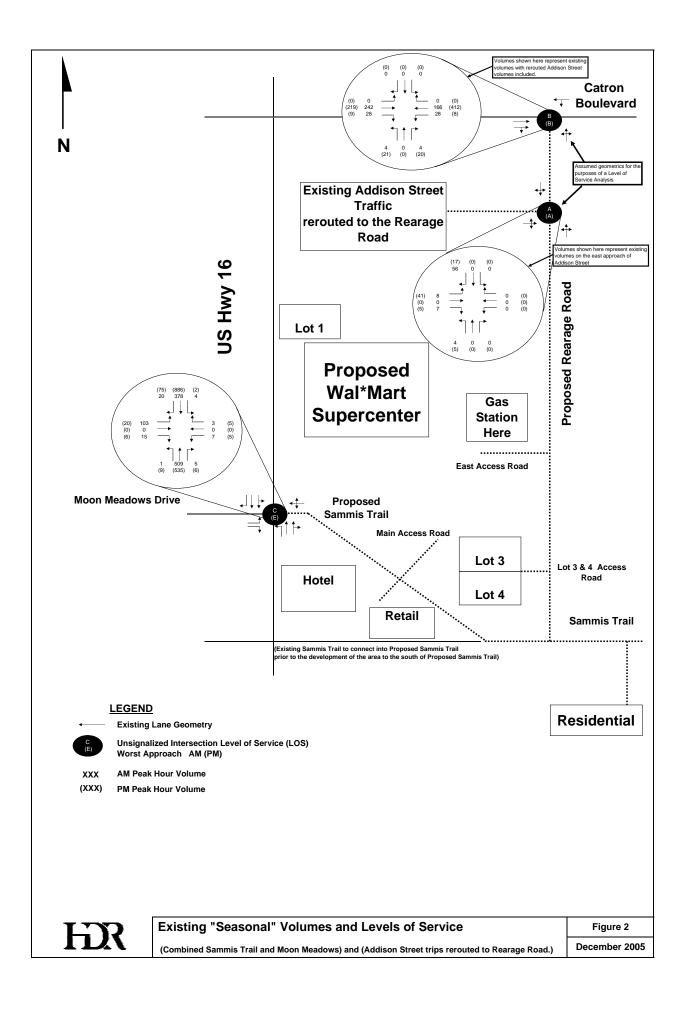
Lana ese mjormanon	
Land Use Type	Size
Wal*Mart (Discount Superstore)	203,000 sq.ft.
Lot 1 (Specialty Retail)	30,000 sq.ft.
Lot 3 (High Turnover Restaurant)	6,000 sq.ft.
Lot 4 (Specialty Retail)	50,000 sq. ft.
Hotel	150 rooms
Specialty Retail near Hotel	20,000 sq. ft.
Single Family Detached Housing	300 lots

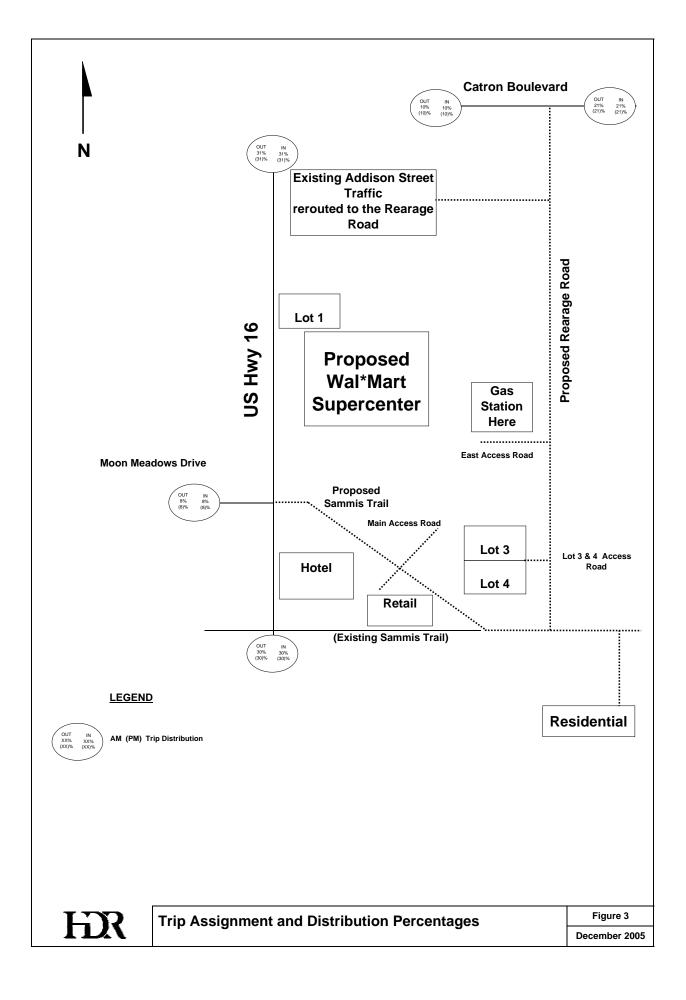

Table 1: Land Use Information

The site plan includes the realignment of a portion of Sammis Trail west of US 16 to connect with Moon Meadows Drive at US 16. The Wal*Mart and Lots 1,3, & 4 will be located north of Sammis Trail, while the hotel, specialty retail, and single family houses will be located south of Sammis Trail. The Wal*Mart and Lot 1 will have an access road (Main Access Road) located approximately 850-900 feet east of US 16. The access road will continue across Sammis Trail to provide access to the hotel and retail, creating a four-way intersection. Until the Hotel and retail area are developed, an interim connection from existing Sammis Trail will be required. The existing Sammis Trail shall connect to the proposed Sammis Trail at approximately a 90 degree angle. The location of the interim connection shall be a minimum of 200 feet north of the access road to Wal*Mart. This interim connection shall be removed as development begins on the south side of Sammis Trail.

The proposed Rearage Road would run parallel to US 16 from Sammis Trail to Catron Boulevard. This road would provide access to Wal*Mart, lots along the eastern edge of the development, and would allow the existing Addison Street access to US 16 to be rerouted to the Rearage Road. A driveway will be located approximately 400 feet north of the Rearage Road/Sammis Trail intersection to provide access to Lots 3 & 4. The exact driveway location shall meet City of Rapid City driveway spacing standards. One additional access road will also be constructed to provide direct access to the rearage road. The study area encompasses the US 16 / Moon Meadows Drive intersection, Catron Boulevard / Rearage Road intersection, plus five additional intersections created by the development:

- US 16 / Moon Meadows Drive / Sammis Trail
- Catron Boulevard / Rearage Road
- Addison Street / Rearage Road
- Sammis Trail / Main Access Road (proposed)
- Sammis Trail / Rearage Road (proposed)
- Rearage Trail / East Access Road (proposed)
- Rearage Road / Lot 3 & 4 access (proposed)


An illustration of the proposed development and study area is shown in Figure 1.



Methodology

The main objective of the study was to determine the traffic impacts of the proposed mixed-use development located near the intersection of US 16 and Moon Meadows Drive/Sammis Trail in Rapid City, South Dakota. A traffic operations analysis of the surrounding roadway system and proposed roadways was performed to predict the quality of traffic operations in the area.

- Existing AM and PM peak hour turning movement counts were collected at the intersection of US 16/Moon Meadows Drive and on Catron Boulevard (Figure 2). The existing counts were adjusted to represent summer "seasonal" volumes factors supplied by the SDDOT.
- The proposed development trips were estimated using the methodology of <u>ITE Trip Generation</u>, 7th <u>Edition</u>. The PM Peak Hour of Generator rate for the Wal*Mart store was adjusted based on recommendations in a SDDOT completed study "Verify Certain ITE Trip Generation Rate Applications in South Dakota".
- Some portion of the trips to the proposed development may be shared-use trips. An internal capture rate of 16% was agreed upon by City of Rapid City, the State of South Dakota, and HDR to be used in this study.
- The pre-development daily traffic volumes were used to determine the directional orientation of traffic. It was assumed the development would alter the directional orientation as shown in Figure 3.
- Capacity analyses (Level of Service) were performed for the AM and PM peak hours. The following scenarios will be evaluated:
 - Existing Conditions
 - 2005 Build Condition Existing volumes added to the build volumes (proposed development trips).
 - 2020 Build Condition Existing volumes increased at a rate of 2% per year for 15 years added to the build volumes (proposed development trips).
- The impacts of the site-generated trips on the surrounding street network were determined using Synchro 6.1 and the methodologies summarized in the <u>Highway Capacity Manual</u>.
- Mitigation measures were identified to provide acceptable operations at the study area intersections.

Trip Generation

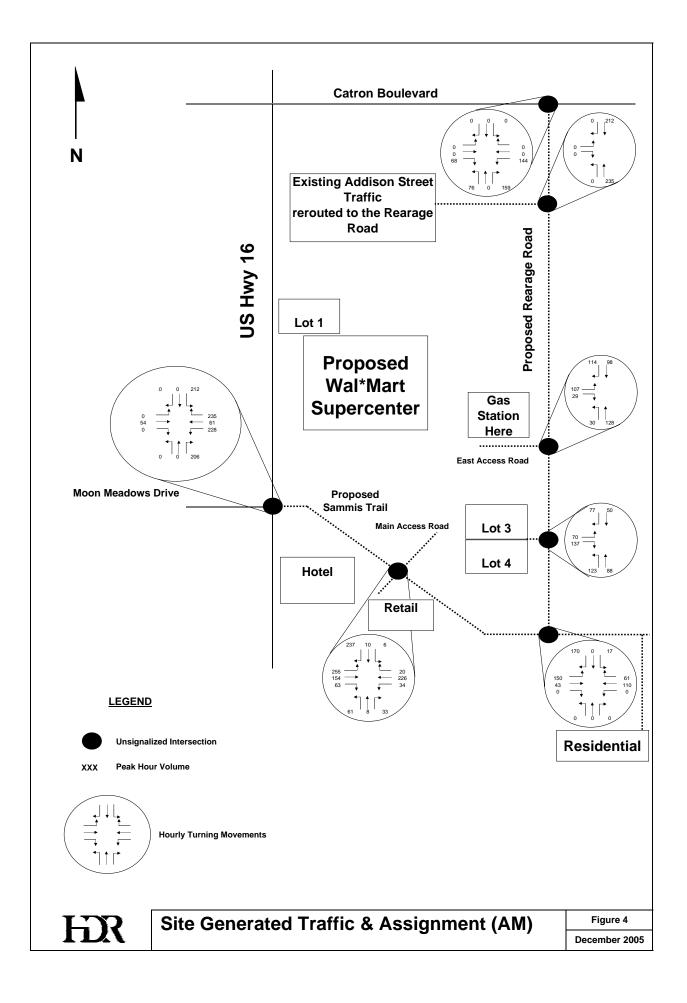
<u>ITE Trip Generation, 7th Edition</u> was used to determine the number of expected trips generated by the development during the AM and PM peak hour. Due to the numerous buildings on the proposed site, separate land uses were used in the trip generation calculation. The trip generation rate for the Wal*Mart Superstore was adjusted to 5.00 for the PM Peak Hour of Generator based on a study completed by the South Dakota Department of Transportation.

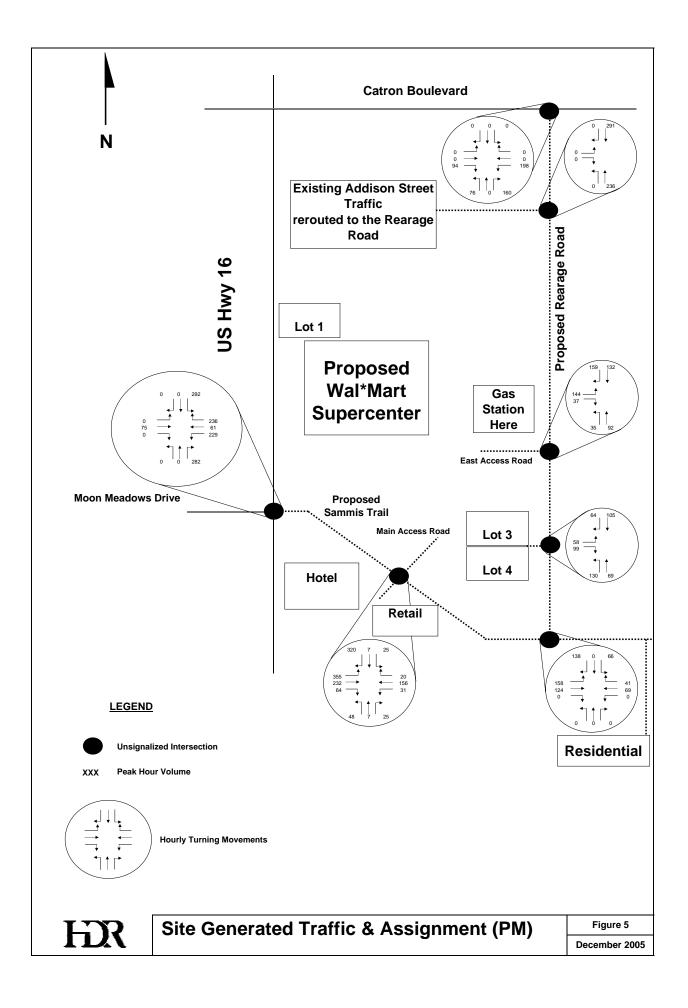
Based on the high density of retail land uses located in a relatively small area, an internal capture rate of 16% was determined to be a conservative approach for estimating trips for this development. The trips internally captured were routed on the proposed roadways with exception of trips that were allowed to travel between land uses using internal roadways or parking lots.

The site-generated trip summary using this methodology is shown in **Table 2**.

Table 2

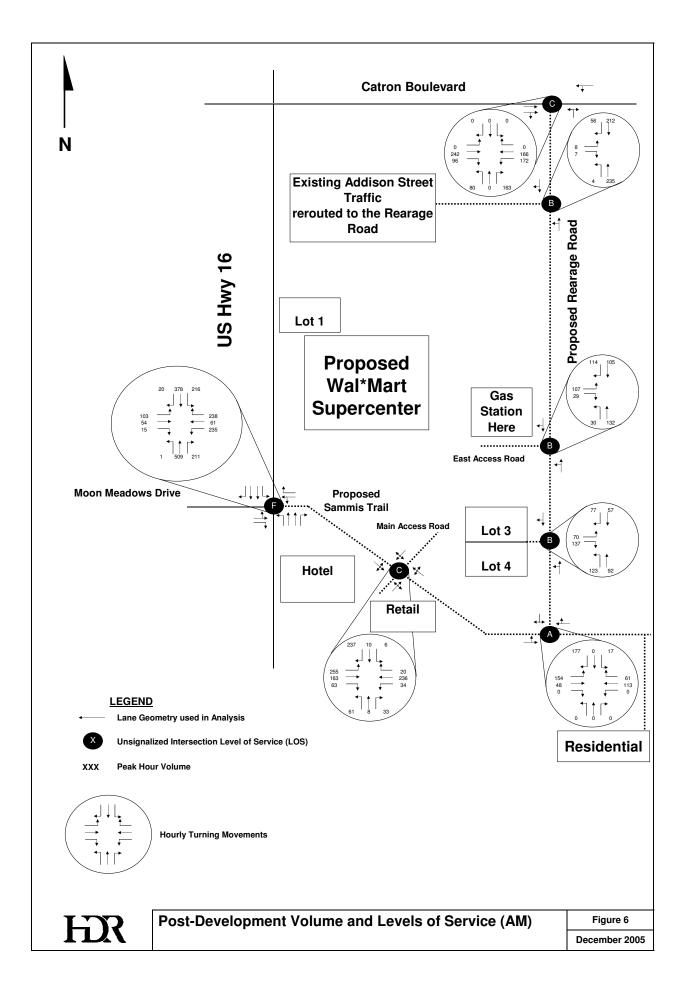
					А	M Peak Ho	ur of Gener	ator		PM Peak Hour of Generator					
Development	Number	Unit	ITE Land Use	% Enter	% Exit	ITE Trip Rate	Total Trip Ends	Entering Trips	Exiting Trips	% Enter	% Exit	ITE Trip Rate	Total Trip Ends	Entering Trips	Exiting Trips
Wal*Mart	203000	sq ft	813	53%	47%	3.17	644	341	302	52%	48%	5.00	1015	528	487
Lot 1 (Specialty Retail)	30000	sq ft	814	48%	52%	6.84	205	98	107	56%	44%	5.02	151	84	66
Lot 3 (High Turnover Restaurant)	6000	sq ft	932	52%	48%	13.53	81	42	39	55%	45%	18.8	113	62	51
Lot 4 (Specialty Retail)	50000	sq ft	814	48%	52%	6.84	342	164	178	56%	44%	5.02	251	141	110
Hotel	150	Rooms	310	55%	45%	0.52	78	43	35	58%	42%	0.61	92	53	38
Specialty Retail	20000	sq ft	814	48%	52%	6.84	137	66	71	56%	44%	5.02	100	56	44
Houses (SF Detached)	300	lots	210	26%	74%	0.77	231	60	171	64%	36%	1.02	306	196	110
						Subtotal							2027	1120	
Internal Trip Reduction - 16%													324	179	
Note: The DM trip game.						Total	1443	684					1703		762

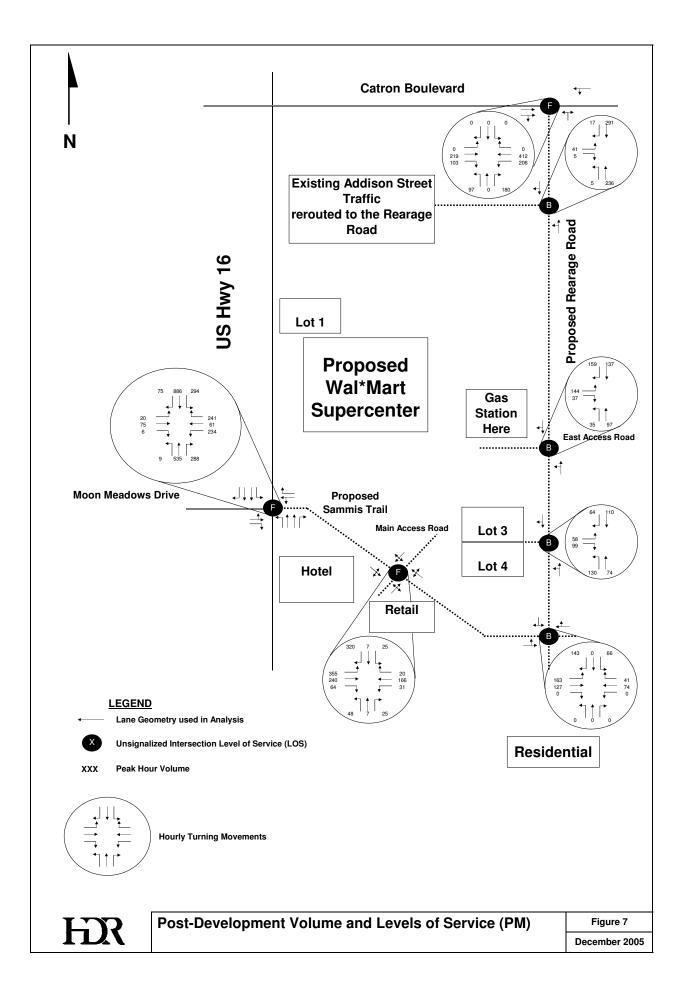

Note: The PM trip generation rate for Wal*Mart was determined by information provided in a Trip Generation Study conducted by the SDDOT called "Verify Certain ITE Trip Generation Rate Applications" in South Dakota.


Trip Distribution

The orientation of site-generated traffic is the most complex and subjective step in the process of any traffic impact analysis. There are a variety of methods available to estimate the likely orientation of traffic; however, no method can guarantee 100 percent accuracy (people are free to visit this site from any location using whichever route they choose). Therefore, it is important to provide the most reasonable possible analysis in combination with a procedure that is reasonably conservative such that an appropriate "factor of safety" is inherent to the results. Trips were distributed along each of the roadway segments and intersections using the directional orientation from Figure 3 and the layout of the proposed site. It is important to note that several assumptions were made including:

- Wal*Mart and Lot 1 proposed trips were assigned via the Main access road and the East Access Road using the external percentages. All trips entering from Catron Boulevard used the East Access Road and the trips entering from US 16 used the Main Access Road.
- All of the trips entering and exiting lot 3 & 4 occurred via the Rearage Road as no internal access to Wal*Mart exists.
- All of the trips entering and exiting the hotel and retail area south of Sammis Trail used the Main Access Road.
- All of the proposed trips entering and exiting the residential area used Sammis Trail to the east of the Rearage Road.


The site generated trip distribution for the AM and PM peak hours are shown in **Figures 4** and **5**, respectively.



Post-Development Volume

The existing AM and PM peak hour traffic volumes from Figure 2 were combined with those from Figures 4 and 5, respectively, to determine the total volumes used in the level of service analysis. It is assumed due to the number of land uses estimated in this study that this area will take 5 to10 years to be fully developed as only the Wal*Mart store is being proposed at this time. The LOS for each intersection is also documented and represents the unmitigated or baseline scenario. An assessment of the quality of traffic operations and mitigation measures are discussed in the next section. **Figures 6** and **7** documents the anticipated post-development turning movements and LOS for the AM and PM peak hours, respectively.

Analysis Description

Observations of traffic volumes provide an understanding of the general nature of traffic, but are insufficient to indicate either the ability of the street network to carry additional traffic or the quality of service provided by the street system. For this reason the concept of Level of Service (LOS) was developed to correlate numerical traffic operational data to subjective descriptions of traffic performance at intersections. Each lane of traffic has delay associated with it and therefore a correlating LOS. The weighted average delay for each of these lanes of traffic for a signalized intersection is the intersection LOS. LOS categories range from LOS A (best) to F (worst) as shown in **Table 3**.

Level of Service	SIGNALIZED Intersection Control Delay (sec)	UNSIGNALIZED Intersection Control Delay (sec)	Intersection LOS Description
А	≤ 10.0	≤ 10.0	Free flow, insignificant delays.
В	10.1-20.0	10.1-15.0	Stable operation, minimal delays.
С	20.1-35.0	15.1-25.0	Stable operation, acceptable delays.
D	35.1-55.0	25.1-35.0	Restricted flow, regular delays.
E	55.1-80.0	35.1-50.0	Maximum capacity, extended delays. Volumes at or near capacity. Long queues form upstream from intersection.
F	> 80.0	> 50.0	Forced flow, excessive delays. Represents jammed conditions. Intersection operates below capacity with low volumes. Queues may block upstream intersections.

TABLE 3:	Level of Service Description
----------	------------------------------

Source: Highway Capacity Manual, Transportation Research Board, 2000

The intersection capacity analyses were completed using Synchro 6.1 software. Synchro replicates the analysis procedures defined in the *2000 Highway Capacity Manual*. This manual provides procedures for the analysis of both signalized and unsignalized intersections. It should be noted that stop-controlled intersections are analyzed by identifying the amount of delay at each approach that conflict with other intersection movements (i.e. all movements except the free flow through lanes), thus approach level of service is reported for unsignalized intersections.

LOS "C" has generally been established as the standard for planning of transportation facilities for peak hour traffic conditions. For this study, LOS "C" for the overall intersection was used as the minimum standard.

A review of the analyses for each volume scenario is provided in the following sections, with summaries of the LOS analyses. Summary LOS output reports of the analysis are included in the appendix and may be referenced to review signal timings and phasing as presented in this study.

Unmitigated Conditions Analysis

Capacity analysis was performed using the existing AM and PM peak hour traffic volumes adjusted when necessary to represent peak summer volumes on the existing and proposed roadway network. In general, the surrounding roadways on the eastern edge of the site are characterized by low levels of traffic with acceptable levels of service based on the lane geometry shown in **Figures 6 and 7**. The US 16 / Sammis Trail / Moon Meadows and Catron Boulevard / Rearage Road intersections are characterized by near or over capacity conditions. In this study, it was assumed that the intersection of Sammis Trail / Main Access Road and Sammis Trail / Rearage Road operated as all-way stop controlled, while the remaining intersections were two-way stop controlled (with US 16, Rearage Road, and Catron Boulevard as the mainlines). A summary of the intersection LOS for the existing conditions is documented in **Table 4**.

IMDEL 4. Onmulguleu Condu		<u></u>			
			Avg Delay		Avg Delay
	Traffic	AM Peak	per Vehicle	PM Peak	per Vehicle
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
U.S. 16 / Sammis Trail	Two-Way	F	N/A ²	F	N/A ²
Sammis Trail / Main access	Four-Way				
road	Stop	С	23.1 ¹	F	N/A ²
Catron Boulevard / Rearage					
Road	Two-Way	С	22.5	F	N/A ²
Addison Street / Rearage					
Road	Two-Way	В	11.1	В	13.3
	ALL-Way				
Sammis Trail / Rearage Road	Stop	A	9.2	В	10.1
Rearage Road / Lot 3 & 4	Two-Way	В	12.1	В	12.3
Rearage Road / East Access	Two-Way	В	12.2	В	13.7

 TABLE 4: Unmitigated Condition Intersection Level-of-Service

Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

Note: 1. Worst Approach at LOS D (34.0 sec/veh), overall intersection at LOS C or 23.1 sec/veh Note: 2. Overcapacity conditions

The LOS reported for four-way stop controlled intersections represents overall intersection delay, whereas the delay for two-way stop controlled intersections are reported as the "worst approach." This is to account for the potential of vehicles waiting on the minor approaches for unreasonable amounts of time where mainline through vehicles have no delay. Two-way stop controlled intersections having minor approaches operating at LOS D, E, or F do not necessarily require mitigation; however additional minor street approach lanes and investigation of signal warrants may be appropriate.

Mitigation

There are three main areas that will likely require mitigation as a result of the development:

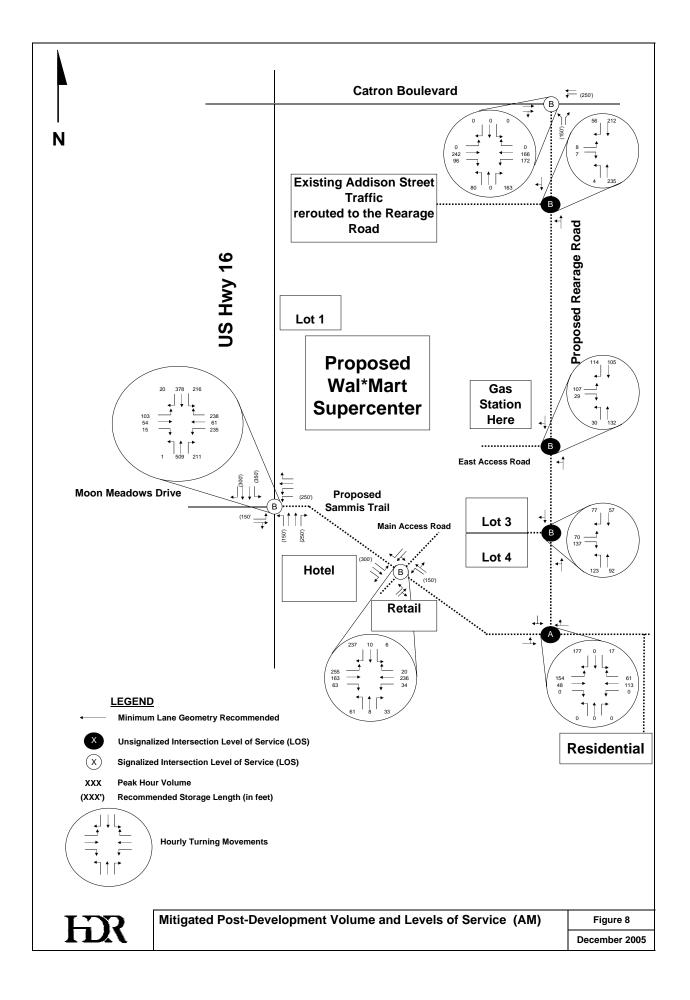
- US Highway 16 / Moon Meadows / Sammis Trail
- Sammis Trail / Wal*Mart Main Access Road
- Catron Boulevard / Rearage Road

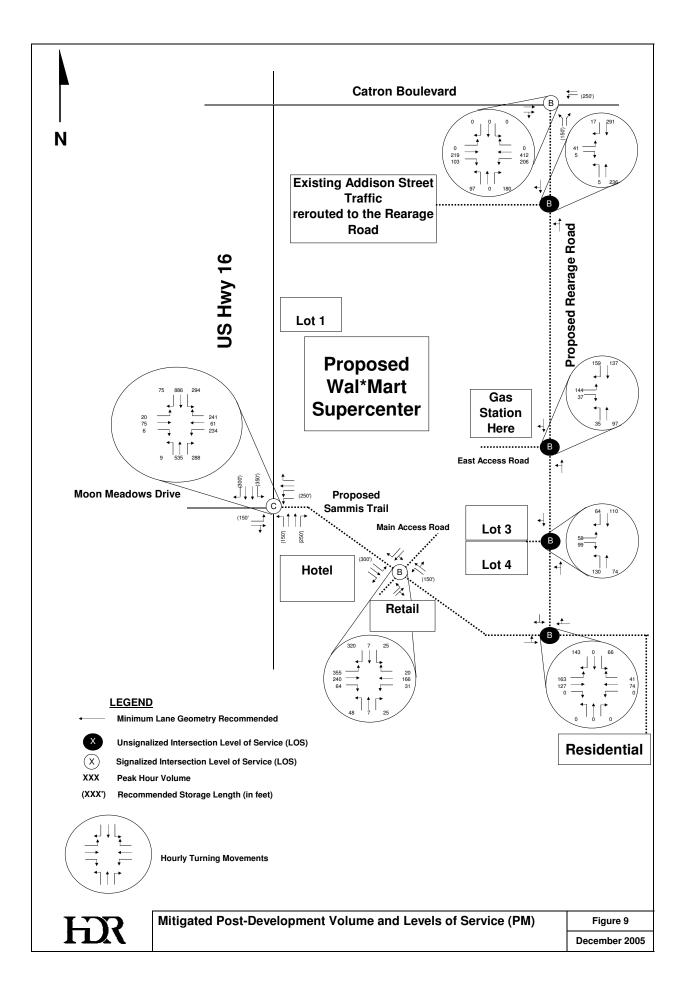
U.S. Highway 16 / Sammis Trail

As documented in Figure 6 and 7, the intersection of US 16 / Sammis Trail is expected to operate at deficient levels after the site is developed. To mitigate this condition, installation of an 8-phase traffic signal with protected left-turn phasing for the northbound and southbound directions and protected left-turn phasing for the eastbound approaches is the most appropriate measure. A Synchro analysis revealed that this measure improved the level of service to LOS C in the PM peak hour. The large volume of left-turning traffic from Sammis Trail onto southbound US 16 also warrants an additional left-turn lane.

Sammis Trail / Main Access Road

As documented in Figure 6 and 7, the intersection of Sammis Trail / Main Access Road is expected to operate at an unacceptable level of service with queuing on the eastbound approach a concern due to the distance from US 16. To mitigate this condition, the intersection shall be signalized and the proposed lane geometry shall consist of an exclusive left-turn lane along the eastbound approach from Sammis Trail and a right-turn lane to improve intersection operations, especially in reducing queue lengths. Installation of a traffic signal (with permitted-protected left turns for eastbound left-turning traffic) improved PM peak hour operations from LOS F to LOS B and reduced queuing.


Catron Boulevard / Rearage Road


As documented in Figure 6 and 7, the intersection of Catron Boulevard / Rearage Road is expected to operate at deficient levels after the site is developed. To mitigate this condition, the intersection shall be signalized and the proposed lane geometry shall consist of an exclusive left-turn lane along the westbound approach. Installation of a traffic signal with protected left turns improved operations from LOS F to LOS B in the PM peak hour.

Summary of Capacity Improvements

Summaries of the mitigated LOS and turning movements are documented in Figures 8 and 9, and Table 5 for the AM and PM peak hours. The following improvements were made:

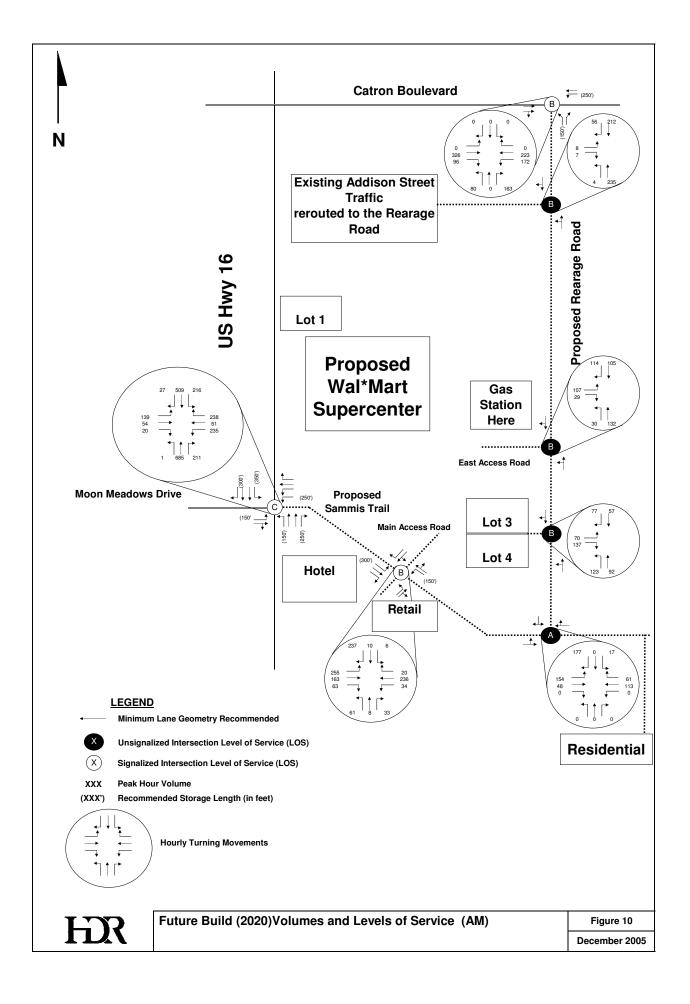
- Sammis Trail.
- Installation of an additional left-turn lane along westbound Sammis Trail at US Highway 16.
- Installation of a traffic signal at Sammis Trail / Main Access Road.
- Installation of a left-turn lane along eastbound Sammis Trail at the Main Access Road.
- Installation of a right-turn lane along eastbound Sammis Trail at the Main Access Road.
- Solution of a traffic signal at Catron Boulevard / Rearage Road
- Solution of a left-turn lane along westbound Catron Boulevard at the Rearage Road

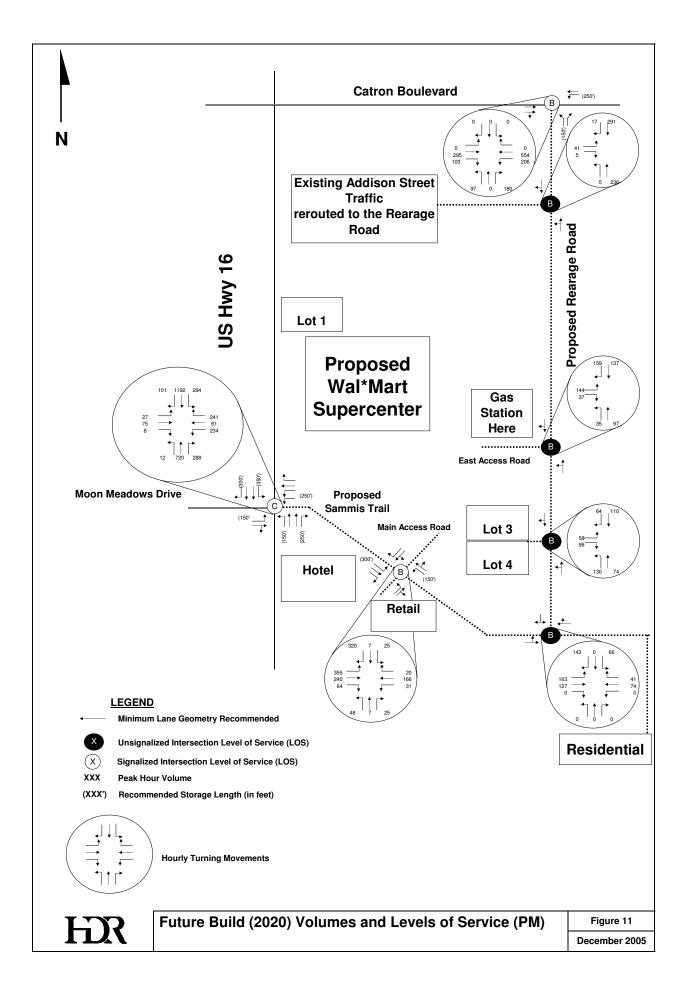
	, in the second se		Avg Delay		Avg Delay
	Traffic	AM Peak	per Vehicle	PM Peak	per Vehicle
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
U.S. 16 / Sammis Trail	Signal	В	19.2	С	21.5
Sammis Trail / Main access					
road	Signal	В	10.5	В	10.4
Catron Boulevard / Rearage					
Road	Signal	В	11.9	В	10.5
Addison Street / Rearage					
Road	Two-Way	В	11.1	В	13.3
	ALL-Way				
Sammis Trail / Rearage Road	Stop	А	9.2	В	10.1
Rearage Road / Lot 3 & 4	Two-Way	В	12.1	В	12.3
Rearage Road / East Access	Two-Way	В	12.2	В	13.7

 TABLE 5: Mitigated Intersection Level-of-Service

Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

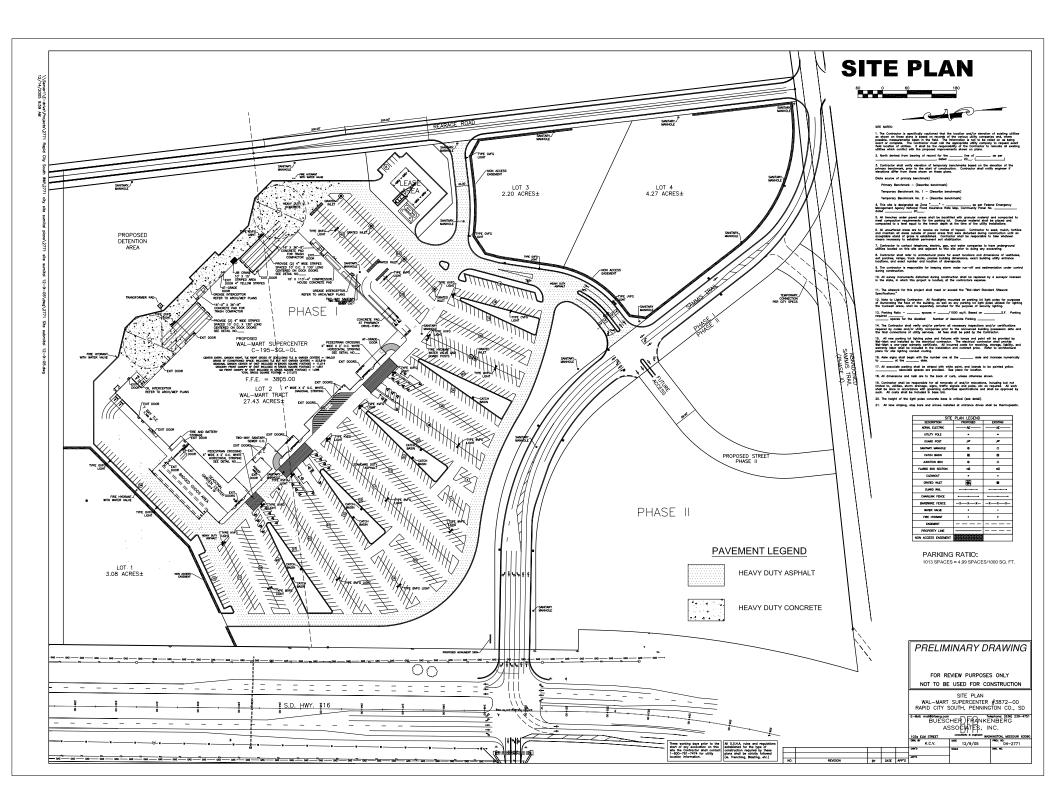
Future Build (2020) Conditions Analysis


Based on growth trends in the study area, future build (2020) volumes were developed by growing the existing traffic volumes by 2.0 percent per year for 15 years and adding them to the trips generated by the proposed mixed-use development including a Wal*Mart store. The growth rate was based on historical count information gathered by the SDDOT. The 2020 build traffic volumes and LOS (AM) are shown in **Figure 10**. The 2020 build traffic volumes and LOS (PM) are shown in **Figure 11**.


The capacity analysis was performed using future build (2020) AM and PM peak hour traffic volumes to determine if the geometric improvements recommended would serve this area in the future. It was determined through an operational analysis that the study intersections would operate at an acceptable LOS in 2020 with no further geometric improvements. A summary of the intersection LOS for the existing conditions is documented in **Table 6**.

			Avg Delay		Avg Delay
	Traffic	AM Peak	per Vehicle	PM Peak	per Vehicle
Intersection	Control	Hour LOS	(sec)	Hour LOS	(sec)
U.S. 16 / Sammis Trail	Signal	С	22.3	С	23.8
Sammis Trail / Main access					
road	Signal	В	10.5	В	10.4
Catron Boulevard / Rearage					
Road	Signal	В	10.9	В	10.8
Addison Street / Rearage					
Road	Two-Way	В	11.1	В	13.3
	ALL-Way				
Sammis Trail / Rearage Road	Stop	A	9.2	В	10.1
Rearage Road / Lot 3 & 4	Two-Way	В	12.1	В	12.3
Rearage Road / East Access	Two-Way	В	12.2	В	13.7

 TABLE 6: Future Build (2020) Intersection Level-of-Service


Source: HDR Engineering, Inc. using Synchro 6.1 (HCM Methodology)

APPENDIX

Current Site Plan
 Synchro Print-outs

	-	\mathbf{F}	4	+	•	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	A			र्भ	- M		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	242	96	172	166	80	163	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	263	104	187	180	87	177	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			367		870	184	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			367		870	184	
tC, single (s)			4.1		6.8	6.9	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			84		65	79	
cM capacity (veh/h)			1188		245	827	
Direction, Lane #	EB 1	EB 2	WB 1	NB 1			
Volume Total	175	192	367	264			
Volume Left	0	0	187	87			
Volume Right	0	104	0	177			
cSH	1700	1700	1188	464			
Volume to Capacity	0.10	0.11	0.16	0.57			
Queue Length 95th (ft)	0	0	14	87			
Control Delay (s)	0.0	0.0	5.1	22.5			
Lane LOS			А	С			
Approach Delay (s)	0.0		5.1	22.5			
Approach LOS				С			
Intersection Summary							
Average Delay			7.8				
Intersection Capacity Ut	ilization		54.8%	I	CU Leve	el of Service	Э
Analysis Period (min)			15				
, ()			-				

≯	\mathbf{r}	1	1	Ψ.	-
				•	

		•	7	I	•	-		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			ę	eî.			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	8	7	4	235	212	56		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	9	8	4	255	230	61		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	525	261	291					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	525	261	291					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	98	99	100					
cM capacity (veh/h)	511	778	1270					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	16	260	291					
Volume Left	9	4	0					
Volume Right	8	0	61					
cSH	609	1270	1700					
Volume to Capacity	0.03	0.00	0.17					
Queue Length 95th (ft)	2	0	0					
Control Delay (s)	11.1	0.2	0.0					
Lane LOS	В	A						
Approach Delay (s)	11.1	0.2	0.0					
Approach LOS	В							
Intersection Summary								
Average Delay			0.4					
Intersection Capacity U	tilization		26.4%	10	CU Leve	of Service	А	
Analysis Period (min)			15					

HCM Unsignalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	≯	-	\mathbf{r}	4	+	•	1	Ť	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	255	163	63	34	236	20	61	8	33	6	10	237
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	277	177	68	37	257	22	66	9	36	7	11	258
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	523	315	111	275								
Volume Left (vph)	277	37	66	7								
Volume Right (vph)	68	22	36	258								
Hadj (s)	0.06	0.02	-0.04	-0.52								
Departure Headway (s)	5.9	6.2	7.1	6.2								
Degree Utilization, x	0.86	0.54	0.22	0.47								
Capacity (veh/h)	599	535	440	537								
Control Delay (s)	34.0	16.4	12.1	14.5								
Approach Delay (s)	34.0	16.4	12.1	14.5								
Approach LOS	D	С	В	В								
Intersection Summary												
Delay			23.1									
HCM Level of Service			С									
Intersection Capacity Uti	lization		80.2%	[(CU Leve	el of Ser	vice		D			
Analysis Period (min)			15									

HCM Unsignalized Intersection Capacity Analysis 15: Moon Meadows & US 16

	≯	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्भ	1		र्भ	1	٦	<u></u>	1	٦	<u></u>	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	103	54	15	235	61	238	1	509	211	216	378	20
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	112	59	16	255	66	259	1	553	229	235	411	22
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	1451	1665	205	1276	1458	277	433			783		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	1451	1665	205	1276	1458	277	433			783		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	14	98	0	28	64	100			72		
cM capacity (veh/h)	20	69	801	28	92	721	1123			831		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	171	16	322	259	1	277	277	229	235	205	205	22
Volume Left	112	0	255	0	1	0	0	0	235	0	0	0
Volume Right	0	16	0	259	0	0	0	229	0	0	0	22
cSH	26	801	32	721	1123	1700	1700	1700	831	1700	1700	1700
Volume to Capacity	6.52	0.02	9.99	0.36	0.00	0.16	0.16	0.13	0.28	0.12	0.12	0.01
Queue Length 95th (ft)	Err	2	Err	41	0	0	0	0	29	0	0	0
Control Delay (s)	Err	9.6	Err	12.8	8.2	0.0	0.0	0.0	11.0	0.0	0.0	0.0
Lane LOS	F	А	F	В	А				В			
Approach Delay (s)	9127.8		5548.2		0.0				3.9			
Approach LOS	F		F									
Intersection Summary												
Average Delay			2222.0									
Intersection Capacity L	Jtilization		61.3%	ŀ	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									

	≯	-	+	•	1			
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્સ	¢Î,		Y			
Sign Control		Stop	Stop		Stop			
Volume (vph)	154	48	113	61	17	177		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	167	52	123	66	18	192		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	220	189	211					
Volume Left (vph)	167	0	18					
Volume Right (vph)	0	66	192					
Hadj (s)	0.19	-0.18	-0.50					
Departure Headway (s)	4.8	4.5	4.4					
Degree Utilization, x	0.29	0.24	0.26					
Capacity (veh/h)	709	755	765					
Control Delay (s)	9.8	8.9	8.9					
Approach Delay (s)	9.8	8.9	8.9					
Approach LOS	А	А	А					
Intersection Summary								
Delay			9.2					
HCM Level of Service			А					
Intersection Capacity Uti	lization		44.4%	l	CU Leve	el of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ŧ	-
---	--------------	---	---	---	---

	-	•	7	I	•	-	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्भ	f,		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	70	137	123	92	57	77	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	76	149	134	100	62	84	
Pedestrians		-	-			-	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	471	104	146				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	471	104	146				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	85	84	91				
cM capacity (veh/h)	500	951	1436				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	225	234	146				
Volume Left	76	134	0				
Volume Right	149	0	84				
cSH	729	1436	1700				
Volume to Capacity	0.31	0.09	0.09				
Queue Length 95th (ft)	33	8	0.09				
Control Delay (s)	12.1	ہ 4.8	0.0				
Lane LOS	12.1 B	4.0 A	0.0				
Approach Delay (s)	12.1	4.8	0.0				
Approach Delay (S) Approach LOS	I∠.I B	4.0	0.0				
	D						
Intersection Summary							
Average Delay			6.4				
Intersection Capacity Ut	tilization		43.4%	IC	CU Leve	I of Service	
Analysis Period (min)			15				

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٠	\mathbf{F}	•	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4Î	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	107	29	30	132	105	114
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	116	32	33	143	114	124
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	385	176	238			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	385	176	238			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	81	96	98			
cM capacity (veh/h)	603	867	1329			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	148	176	238			
Volume Left	116	33	0			
Volume Right	32	0	124			
cSH	645	1329	1700			
Volume to Capacity	0.23	0.02	0.14			
Queue Length 95th (ft)	22	2	0.14			
Control Delay (s)	12.2	1.6	0.0			
Lane LOS	B	A	0.0			
Approach Delay (s)	12.2	1.6	0.0			
Approach LOS	B	1.0	0.0			
	_					
Intersection Summary			0.7			
Average Delay			3.7	14		
Intersection Capacity U	inization		40.4%	10	JU Leve	el of Service
Analysis Period (min)			15			

	-	\mathbf{F}	4	←	•	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	A			र्भ	- M		
Sign Control	Free			Free	Stop		
Grade	0%			0%	0%		
Volume (veh/h)	219	103	206	412	97	180	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	238	112	224	448	105	196	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type					None		
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume			350		1190	175	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol			350		1190	175	
tC, single (s)			4.1		6.8	6.9	
tC, 2 stage (s)							
tF (s)			2.2		3.5	3.3	
p0 queue free %			81		28	77	
cM capacity (veh/h)			1206		147	838	
Direction, Lane #	EB 1	EB 2	WB 1	NB 1			
Volume Total	159	191	672	301			
Volume Left	0	0	224	105			
Volume Right	0	112	0	196			
cSH	1700	1700	1206	317			
Volume to Capacity	0.09	0.11	0.19	0.95			
Queue Length 95th (ft)	0	0	17	242			
Control Delay (s)	0.0	0.0	4.3	75.9			
Lane LOS			A	F			
Approach Delay (s)	0.0		4.3	75.9			
Approach LOS				F			
Intersection Summary							
Average Delay			19.5				
Intersection Capacity Ut	ilization		72.1%	IC	CU Leve	el of Servic	е
Analysis Period (min)			15				

	≯	\mathbf{r}	•	1	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			स्	4Î	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	41	5	5	236	291	17
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	45	5	5	257	316	18
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	593	326	335			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	593	326	335			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	90	99	100			
cM capacity (veh/h)	466	716	1225			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	50	262	335			
Volume Left	50 45	202	335			
	45 5	0	18			
Volume Right cSH	5 485	1225	1700			
Volume to Capacity	465	0.00	0.20			
Queue Length 95th (ft)	<u>0.10</u> 9	0.00	0.20			
Control Delay (s)	9 13.3	0.2	0.0			
Lane LOS	13.3 B	0.2 A	0.0			
Approach Delay (s)	13.3	0.2	0.0			
Approach LOS	13.3 B	0.2	0.0			
	U					
Intersection Summary						
Average Delay			1.1		2111	
Intersection Capacity Uti	ilization		27.3%	10	JU Leve	of Service
Analysis Period (min)			15			

HCM Unsignalized Intersection Capacity Analysis 6: Sammis Trail & Wal*Mart Main Access Road

	۶	-	\mathbf{r}	4	+	•	1	1	۲	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			\$	
Sign Control		Stop			Stop			Stop			Stop	
Volume (vph)	355	240	64	31	166	20	48	7	25	25	7	320
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	386	261	70	34	180	22	52	8	27	27	8	348
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total (vph)	716	236	87	383								
Volume Left (vph)	386	34	52	27								
Volume Right (vph)	70	22	27	348								
Hadj (s)	0.08	0.01	-0.03	-0.50								
Departure Headway (s)	6.1	6.6	7.4	6.1								
Degree Utilization, x	1.21	0.43	0.18	0.65								
Capacity (veh/h)	587	507	431	571								
Control Delay (s)	130.5	14.7	12.1	19.8								
Approach Delay (s)	130.5	14.7	12.1	19.8								
Approach LOS	F	В	В	С								
Intersection Summary												
Delay			74.2									
HCM Level of Service			F									
Intersection Capacity Ut	ilization		83.0%	l	CU Leve	el of Ser	vice		E			
Analysis Period (min)			15									

	≯	-	\rightarrow	4	-	•	•	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		र्च	1		र्स	1	۳	<u></u>	1	٦	<u></u>	1
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Volume (veh/h)	20	75	6	234	61	241	9	535	288	294	886	75
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	22	82	7	254	66	262	10	582	313	320	963	82
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	2208	2516	482	1769	2285	291	1045			895		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	2208	2516	482	1769	2285	291	1045			895		
tC, single (s)	7.5	6.5	6.9	7.5	6.5	6.9	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	0	0	99	0	0	63	99			58		
cM capacity (veh/h)	0	16	531	0	22	706	662			754		
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	NB 2	NB 3	NB 4	SB 1	SB 2	SB 3	SB 4
Volume Total	103	7	321	262	10	291	291	313	320	482	482	82
Volume Left	22	0	254	0	10	0	0	0	320	0	0	0
Volume Right	0	7	0	262	0	0	0	313	0	0	0	82
cSH	0	531	0	706	662	1700	1700	1700	754	1700	1700	1700
Volume to Capacity	Err	0.01	Err	0.37	0.01	0.17	0.17	0.18	0.42	0.28	0.28	0.05
Queue Length 95th (ft)	Err	1	Err	43	1	0	0	0	53	0	0	0
Control Delay (s)	Err	11.9	Err	13.1	10.5	0.0	0.0	0.0	13.2	0.0	0.0	0.0
Lane LOS	F	В	F	В	В				В			
Approach Delay (s)	Err		Err		0.1				3.1			
Approach LOS												
Intersection Summary	F		F									
			F									
Average Delay			F Err									
Average Delay Intersection Capacity Utili	F		-	[CU Leve	el of Ser	vice		С			

	≯	-	+	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	4Î		¥			
Sign Control		Stop	Stop		Stop			
Volume (vph)	163	127	74	41	66	143		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	177	138	80	45	72	155		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	315	125	227					
Volume Left (vph)	177	0	72					
Volume Right (vph)	0	45	155					
Hadj (s)	0.15	-0.18	-0.31					
Departure Headway (s)	4.8	4.7	4.6					
Degree Utilization, x	0.42	0.16	0.29					
Capacity (veh/h)	720	717	721					
Control Delay (s)	11.2	8.6	9.6					
Approach Delay (s)	11.2	8.6	9.6					
Approach LOS	В	А	А					
Intersection Summary								
Delay			10.1					
HCM Level of Service			В					
Intersection Capacity Uti	lization		43.1%	l	CU Leve	el of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ļ	-
---	--------------	---	---	---	---

	-	•	7	1	+	-		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	¥			र्भ	eî.			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	58	99	130	74	110	64		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	63	108	141	80	120	70		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Nedian type	None							
Median storage veh)								
Jpstream signal (ft)								
X, platoon unblocked								
C, conflicting volume	517	154	189					
C1, stage 1 conf vol								
C2, stage 2 conf vol								
Cu, unblocked vol	517	154	189					
C, single (s)	6.4	6.2	4.1					
C, 2 stage (s)								
F (s)	3.5	3.3	2.2					
0 queue free %	86	88	90					
M capacity (veh/h)	465	892	1385					
Direction, Lane #	EB 1	NB 1	SB 1					
/olume Total	171	222	189					
/olume Left	63	141	0					
olume Right	108	0	70					
SH	666	1385	1700					
Volume to Capacity	0.26	0.10	0.11					
Queue Length 95th (ft)	25	9	0.11					
Control Delay (s)	12.3	5.3	0.0					
ane LOS	B	A	0.0					
Approach Delay (s)	12.3	5.3	0.0					
Approach LOS	B	0.0	0.0					
Intersection Summary								
Average Delay			5.6					
Intersection Capacity U	tilization		41.8%	10		of Service	А	
Analysis Period (min)			15					
			10					

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٨	\mathbf{r}	•	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	144	37	35	97	137	159
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	157	40	38	105	149	173
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	417	235	322			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	417	235	322			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	73	95	97			
cM capacity (veh/h)	574	804	1238			
· _ · _ ·						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	197	143	322			
Volume Left	157	38	0			
Volume Right	40	0	173			
cSH	610	1238	1700			
Volume to Capacity	0.32	0.03	0.19			
Queue Length 95th (ft)	35	2	0			
Control Delay (s)	13.7	2.3	0.0			
Lane LOS	В	Α				
Approach Delay (s)	13.7	2.3	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			4.6			
Intersection Capacity U	tilization		46.1%	IC	CU Leve	el of Servic
Analysis Period (min)			15			

HCM Signalized Intersection Capacity Analysis 1: Catron Boulevard & Rearage Road

	-	\mathbf{r}	4	-	1	1		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations	≜ †⊅		ኘ	†	ኘ	1		
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800		
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0		
Lane Util. Factor	0.95		1.00	1.00	1.00	1.00		
Frt	0.96		1.00	1.00	1.00	0.85		
Flt Protected	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3210		1676	1765	1676	1500		
Flt Permitted	1.00		0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3210		1676	1765	1676	1500		
Volume (vph)	242	96	172	166	80	163		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	263	104	187	180	87	177		
RTOR Reduction (vph)	85	0	0	0	0	123		
Lane Group Flow (vph)	282	0	187	180	87	54		
Turn Type			Prot			Perm		
Protected Phases	4		3	8	2			
Permitted Phases						2		
Actuated Green, G (s)	6.7		7.0	17.7	11.3	11.3		
Effective Green, g (s)	6.7		7.0	17.7	11.3	11.3		
Actuated g/C Ratio	0.18		0.19	0.48	0.31	0.31		
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0		
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	581		317	844	512	458		
v/s Ratio Prot	c0.09		c0.11	0.10	c0.05			
v/s Ratio Perm						0.04		
v/c Ratio	0.49		0.59	0.21	0.17	0.12		
Uniform Delay, d1	13.6		13.7	5.6	9.4	9.3		
Progression Factor	1.00		1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.6		2.8	0.1	0.2	0.1		
Delay (s)	14.2		16.5	5.7	9.6	9.4		
Level of Service	В		В	А	А	А		
Approach Delay (s)	14.2			11.2	9.4			
Approach LOS	В			В	А			
Intersection Summary								
HCM Average Control D			11.9	F	ICM Lev	el of Servio	ce	
HCM Volume to Capacit	y ratio		0.37					
Actuated Cycle Length (s)		37.0	S	Sum of lo	ost time (s)		
Intersection Capacity Ut	ilization		35.0%](CU Leve	el of Service	Э	
Analysis Period (min)			15					
c Critical Lane Group								

≯	\mathbf{r}	1	1	Ŧ	-

		•	7	I	+	•		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	Y			ર્સ	4Î			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	8	7	4	235	212	56		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	9	8	4	255	230	61		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	525	261	291					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	525	261	291					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)								
tF (s)	3.5	3.3	2.2					
p0 queue free %	98	99	100					
cM capacity (veh/h)	511	778	1270					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	16	260	291					
Volume Left	9	4	0					
Volume Right	8	0	61					
cSH	609	1270	1700					
Volume to Capacity	0.03	0.00	0.17					
Queue Length 95th (ft)	2	0	0					
Control Delay (s)	11.1	0.2	0.0					
Lane LOS	В	А						
Approach Delay (s)	11.1	0.2	0.0					
Approach LOS	В							
Intersection Summary								
Average Delay			0.4					
Intersection Capacity U	tilization		26.4%	IC	CU Leve	el of Service	А	
Analysis Period (min)			15					

	≯	-	$\mathbf{\hat{z}}$	4	-	•	•	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	†	1	٦	eî 👘		٦	el 🕺			र्भ	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.88			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.98	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1744		1676	1553			1731	1500
Flt Permitted	0.35	1.00	1.00	0.65	1.00		0.75	1.00			0.93	1.00
Satd. Flow (perm)	618	1765	1500	1139	1744		1316	1553			1635	1500
Volume (vph)	255	163	63	34	236	20	61	8	33	6	10	237
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	277	177	68	37	257	22	66	9	36	7	11	258
RTOR Reduction (vph)	0	0	36	0	7	0	0	25	0	0	0	177
Lane Group Flow (vph)	277	177	32	37	272	0	66	20	0	0	18	81
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	17.0	17.0	17.0	8.6	8.6		11.4	11.4			11.4	11.4
Effective Green, g (s)	17.0	17.0	17.0	8.6	8.6		11.4	11.4			11.4	11.4
Actuated g/C Ratio	0.47	0.47	0.47	0.24	0.24		0.31	0.31			0.31	0.31
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	417	824	701	269	412		412	486			512	470
v/s Ratio Prot	c0.08	0.10			0.16			0.01				
v/s Ratio Perm	c0.23		0.02	0.03			0.05				0.01	c0.05
v/c Ratio	0.66	0.21	0.05	0.14	0.66		0.16	0.04			0.04	0.17
Uniform Delay, d1	6.7	5.7	5.3	11.0	12.6		9.0	8.7			8.7	9.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.1	0.0	0.2	3.9		0.2	0.0			0.0	0.2
Delay (s)	10.6	5.9	5.3	11.2	16.5		9.2	8.7			8.7	9.2
Level of Service	В	А	А	В	В		А	А			А	А
Approach Delay (s)		8.3			15.9			9.0			9.2	
Approach LOS		А			В			А			А	
Intersection Summary												
HCM Average Control E			10.5	F	ICM Lev	vel of Se	ervice		В			
HCM Volume to Capaci			0.44									
Actuated Cycle Length (36.4			ost time			8.0			
Intersection Capacity Ut	ilization		49.5%	10	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٢	el el		ሻሻ	†	1	ľ	<u></u>	1	7	<u></u>	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1708		3252	1765	1500	1676	3353	1500	1676	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1708		3252	1765	1500	1676	3353	1500	1676	3353	1500
Volume (vph)	103	54	15	235	61	238	1	509	211	216	378	20
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	112	59	16	255	66	259	1	553	229	235	411	22
RTOR Reduction (vph)	0	15	0	0	0	209	0	0	202	0	0	20
Lane Group Flow (vph)	112	60	0	255	66	50	1	553	27	235	411	2
Turn Type	Prot			Prot		Over	Prot		Over	Prot		Over
Protected Phases	7	4		3	8	1	5	2	3	1	6	7
Permitted Phases												
Actuated Green, G (s)	5.8	4.5		6.3	5.0	10.2	0.7	16.3	6.3	10.2	25.8	5.8
Effective Green, g (s)	5.8	4.5		6.3	5.0	10.2	0.7	16.3	6.3	10.2	25.8	5.8
Actuated g/C Ratio	0.11	0.08		0.12	0.09	0.19	0.01	0.31	0.12	0.19	0.48	0.11
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	182	144		384	166	287	22	1025	177	321	1623	163
v/s Ratio Prot	0.07	0.04		c0.08	c0.04	0.03	0.00	c0.16	0.02	c0.14	0.12	0.00
v/s Ratio Perm												
v/c Ratio	0.62	0.42		0.66	0.40	0.17	0.05	0.54	0.15	0.73	0.25	0.01
Uniform Delay, d1	22.7	23.2		22.5	22.7	18.0	26.0	15.4	21.1	20.3	8.1	21.2
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.1	2.0		4.3	1.6	0.3	0.9	0.5	0.4	8.3	0.1	0.0
Delay (s)	28.7	25.1		26.8	24.3	18.3	26.8	15.9	21.5	28.6	8.2	21.2
Level of Service	С	С		С	С	В	С	В	С	С	А	С
Approach Delay (s)		27.3			22.7			17.6			15.8	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM Average Control D			19.2	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capacit			0.54									
Actuated Cycle Length (,		53.3			ost time			12.0			
Intersection Capacity Uti	lization		51.2%	I	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	-	•	1			
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्भ	¢Î,		Y			
Sign Control		Stop	Stop		Stop			
Volume (vph)	154	48	113	61	17	177		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	167	52	123	66	18	192		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	220	189	211					
Volume Left (vph)	167	0	18					
Volume Right (vph)	0	66	192					
Hadj (s)	0.19	-0.18	-0.50					
Departure Headway (s)	4.8	4.5	4.4					
Degree Utilization, x	0.29	0.24	0.26					
Capacity (veh/h)	709	755	765					
Control Delay (s)	9.8	8.9	8.9					
Approach Delay (s)	9.8	8.9	8.9					
Approach LOS	А	А	А					
Intersection Summary								
Delay			9.2					
HCM Level of Service			А					
Intersection Capacity Uti	lization		44.4%	l	CU Leve	el of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ŧ	-
---	--------------	---	---	---	---

	•	•)	1	•				
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	- Y			ę	el 🕴				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	70	137	123	92	57	77			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	76	149	134	100	62	84			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	471	104	146						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	471	104	146						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)									
tF (s)	3.5	3.3	2.2						
p0 queue free %	85	84	91						
cM capacity (veh/h)	500	951	1436						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	225	234	146						
Volume Left	76	134	0						
Volume Right	149	0	84						
cSH	729	1436	1700						
Volume to Capacity	0.31	0.09	0.09						
Queue Length 95th (ft)	33	8	0						
Control Delay (s)	12.1	4.8	0.0						
Lane LOS	B	A	0.0						
Approach Delay (s)	12.1	4.8	0.0						
Approach LOS	B	1.0	0.0						
Intersection Summary			6.4						
Average Delay	tilization		6.4 43.4%	10		of Convior		٨	
Intersection Capacity Ut	inization		43.4% 15	I	JU Leve	el of Service	5	А	
Analysis Period (min)			15						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	≯	\mathbf{r}	•	Ť	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4Î	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	107	29	30	132	105	114
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	116	32	33	143	114	124
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	385	176	238			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	385	176	238			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	81	96	98			
cM capacity (veh/h)	603	867	1329			
· · · · · ·						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	148	176	238			
Volume Left	116	33	0			
Volume Right	32	0	124			
cSH	645	1329	1700			
Volume to Capacity	0.23	0.02	0.14			
Queue Length 95th (ft)	22	2	0			
Control Delay (s)	12.2	1.6	0.0			
Lane LOS	В	А				
Approach Delay (s)	12.2	1.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.7			
Intersection Capacity Ut	tilization		40.4%	IC	CU Leve	el of Service
Analysis Period (min)			15			

	-	\mathbf{r}	4	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	≜ †⊅		۲	•	۲	1	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0	
Lane Util. Factor	0.95		1.00	1.00	1.00	1.00	
Frt	0.95		1.00	1.00	1.00	0.85	
Flt Protected	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (prot)	3192		1676	1765	1676	1500	
Flt Permitted	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (perm)	3192		1676	1765	1676	1500	
Volume (vph)	219	103	206	412	97	180	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	238	112	224	448	105	196	
RTOR Reduction (vph)	84	0	0	0	0	153	
Lane Group Flow (vph)	266	0	224	448	105	43	
Turn Type			Prot			Perm	
Protected Phases	4		3	8	2		
Permitted Phases						2	
Actuated Green, G (s)	9.1		7.5	20.6	8.1	8.1	
Effective Green, g (s)	9.1		7.5	20.6	8.1	8.1	
Actuated g/C Ratio	0.25		0.20	0.56	0.22	0.22	
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	791		343	991	370	331	
v/s Ratio Prot	0.08		c0.13	c0.25	c0.06		
v/s Ratio Perm						0.03	
v/c Ratio	0.34		0.65	0.45	0.28	0.13	
Uniform Delay, d1	11.3		13.4	4.7	11.9	11.5	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.3		4.4	0.3	0.4	0.2	
Delay (s)	11.6		17.8	5.1	12.3	11.7	
Level of Service	В		В	A	В	В	
Approach Delay (s)	11.6			9.3	11.9		
Approach LOS	В			А	В		
Intersection Summary							
HCM Average Control D			10.5	H	ICM Lev	vel of Servio	ce
HCM Volume to Capacit			0.43				
Actuated Cycle Length (36.7			ost time (s)	
Intersection Capacity Ut	ilization		37.6%	l	CU Leve	el of Service	9
Analysis Period (min)			15				
c Critical Lane Group							

	٦	\mathbf{r}	1	1	Ŧ	∢
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			स्	f,	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	41	5	5	236	291	17
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	45	5	5	257	316	18
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	593	326	335			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	593	326	335			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	90	99	100			
cM capacity (veh/h)	466	716	1225			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	50	262	335			
Volume Left	45	5	0			
Volume Right	5	0	18			
cSH	485	1225	1700			
Volume to Capacity	0.10	0.00	0.20			
Queue Length 95th (ft)	9	0	0			
Control Delay (s)	13.3	0.2	0.0			
Lane LOS	В	A				
Approach Delay (s)	13.3	0.2	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			1.1			
Intersection Capacity Ut	tilization		27.3%	10	CU Leve	l of Service
Analysis Period (min)			15			
			. 5			

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	ľ	el el		1	el el			र्भ	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.98		1.00	0.88			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.96	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1736		1676	1561			1699	1500
Flt Permitted	0.41	1.00	1.00	0.60	1.00		0.73	1.00			0.83	1.00
Satd. Flow (perm)	726	1765	1500	1055	1736		1296	1561			1470	1500
Volume (vph)	355	240	64	31	166	20	48	7	25	25	7	320
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	386	261	70	34	180	22	52	8	27	27	8	348
RTOR Reduction (vph)	0	0	35	0	9	0	0	19	0	0	0	244
Lane Group Flow (vph)	386	261	35	34	193	0	52	16	0	0	35	104
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	19.3	19.3	19.3	7.5	7.5		11.6	11.6			11.6	11.6
Effective Green, g (s)	19.3	19.3	19.3	7.5	7.5		11.6	11.6			11.6	11.6
Actuated g/C Ratio	0.50	0.50	0.50	0.19	0.19		0.30	0.30			0.30	0.30
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	551	876	744	203	335		386	465			438	447
v/s Ratio Prot	c0.14	0.15			0.11			0.01				
v/s Ratio Perm	c0.21		0.02	0.03			0.04				0.02	c0.07
v/c Ratio	0.70	0.30	0.05	0.17	0.58		0.13	0.03			0.08	0.23
Uniform Delay, d1	6.7	5.8	5.1	13.1	14.3		10.0	9.7			9.8	10.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.2	0.0	0.4	2.4		0.2	0.0			0.1	0.3
Delay (s)	10.7	6.0	5.1	13.5	16.7		10.1	9.7			9.9	10.6
Level of Service	В	А	А	В	В		В	А			А	В
Approach Delay (s)		8.5			16.2			10.0			10.5	
Approach LOS		А			В			А			В	
Intersection Summary												
HCM Average Control E			10.4	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci			0.51									
Actuated Cycle Length			38.9			ost time			8.0			
Intersection Capacity Ut	tilization		50.7%	10	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	-	\mathbf{F}	4	-	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	el el		ሻሻ	•	1	1	<u></u>	1	ľ	<u></u>	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1744		3252	1765	1500	1676	3353	1500	1676	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1744		3252	1765	1500	1676	3353	1500	1676	3353	1500
Volume (vph)	20	75	6	234	61	241	9	535	288	294	886	75
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	22	82	7	254	66	262	10	582	313	320	963	82
RTOR Reduction (vph)	0	5	0	0	0	203	0	0	281	0	0	41
Lane Group Flow (vph)	22	84	0	254	66	59	10	582	32	320	963	41
Turn Type	Prot			Prot		Over	Prot		Over	Prot		Perm
Protected Phases	7	4		3	8	1	5	2	3	1	6	
Permitted Phases												6
Actuated Green, G (s)	1.4	8.1		6.3	13.0	14.1	0.7	17.6	6.3	14.1	31.0	31.0
Effective Green, g (s)	1.4	8.1		6.3	13.0	14.1	0.7	17.6	6.3	14.1	31.0	31.0
Actuated g/C Ratio	0.02	0.13		0.10	0.21	0.23	0.01	0.28	0.10	0.23	0.50	0.50
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	38	227		330	369	341	19	950	152	381	1674	749
v/s Ratio Prot	0.01	c0.05		c0.08	0.04	0.04	0.01	0.17	0.02	c0.19	c0.29	
v/s Ratio Perm												0.03
v/c Ratio	0.58	0.37		0.77	0.18	0.17	0.53	0.61	0.21	0.84	0.58	0.05
Uniform Delay, d1	30.1	24.7		27.2	20.2	19.3	30.5	19.3	25.6	22.9	10.9	8.0
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	19.6	1.0		10.3	0.2	0.2	23.9	1.2	0.7	14.9	0.5	0.0
Delay (s)	49.7	25.7		37.5	20.4	19.6	54.4	20.5	26.3	37.9	11.4	8.0
Level of Service	D	С		D	С	В	D	С	С	D	В	Α
Approach Delay (s)		30.4			27.5			22.9			17.4	
Approach LOS		С			С			С			В	
Intersection Summary												
HCM Average Control D			21.5	ŀ	ICM Lev	vel of Se	ervice		С			
HCM Volume to Capacit			0.62									
Actuated Cycle Length (62.1					12.0				
Intersection Capacity Uti	lization		56.5%									
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	+	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्स	4Î		¥			
Sign Control		Stop	Stop		Stop			
Volume (vph)	163	127	74	41	66	143		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	177	138	80	45	72	155		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	315	125	227					
Volume Left (vph)	177	0	72					
Volume Right (vph)	0	45	155					
Hadj (s)	0.15	-0.18	-0.31					
Departure Headway (s)	4.8	4.7	4.6					
Degree Utilization, x	0.42	0.16	0.29					
Capacity (veh/h)	720	717	721					
Control Delay (s)	11.2	8.6	9.6					
Approach Delay (s)	11.2	8.6	9.6					
Approach LOS	В	А	А					
Intersection Summary								
Delay			10.1					
HCM Level of Service			В					
Intersection Capacity Uti	lization		43.1%	l	CU Leve	el of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ŧ	-
---	--------------	---	---	---	---

		•	7	1	+	•	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्भ	f.		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	58	99	130	74	110	64	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	63	108	141	80	120	70	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	517	154	189				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	517	154	189				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	86	88	90				
cM capacity (veh/h)	465	892	1385				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	171	222	189				
Volume Left	63	141	0				
Volume Right	108	0	70				
cSH	666	1385	1700				
Volume to Capacity	0.26	0.10	0.11				
Queue Length 95th (ft)	25	9	0				
Control Delay (s)	12.3	5.3	0.0				
Lane LOS	В	А					
Approach Delay (s)	12.3	5.3	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			5.6				
Intersection Capacity U	tilization		41.8%	I	CU Leve	of Service	А
Analysis Period (min)			15				
-							

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٨	\mathbf{r}	•	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	144	37	35	97	137	159
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	157	40	38	105	149	173
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	417	235	322			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	417	235	322			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	73	95	97			
cM capacity (veh/h)	574	804	1238			
· _ · _ ·						
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	197	143	322			
Volume Left	157	38	0			
Volume Right	40	0	173			
cSH	610	1238	1700			
Volume to Capacity	0.32	0.03	0.19			
Queue Length 95th (ft)	35	2	0			
Control Delay (s)	13.7	2.3	0.0			
Lane LOS	В	Α				
Approach Delay (s)	13.7	2.3	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			4.6			
Intersection Capacity U	tilization		46.1%	IC	CU Leve	el of Servic
Analysis Period (min)			15			

HCM Signalized Intersection Capacity Analysis 1: Catron Boulevard & Rearage Road

	-	\mathbf{r}	4	-	1	1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR	
Lane Configurations	∱ ⊅		۳	†	۲	1	
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	
Total Lost time (s)	4.0		4.0	4.0	4.0	4.0	
Lane Util. Factor	0.95		1.00	1.00	1.00	1.00	
Frt	0.97		1.00	1.00	1.00	0.85	
Flt Protected	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (prot)	3239		1676	1765	1676	1500	
Flt Permitted	1.00		0.95	1.00	0.95	1.00	
Satd. Flow (perm)	3239		1676	1765	1676	1500	
Volume (vph)	326	96	172	223	80	163	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	
Adj. Flow (vph)	354	104	187	242	87	177	
RTOR Reduction (vph)	51	0	0	0	0	139	
Lane Group Flow (vph)	407	0	187	242	87	38	
Turn Type			Prot			Perm	
Protected Phases	4		3	8	2		
Permitted Phases						2	
Actuated Green, G (s)	10.3		7.0	21.3	7.9	7.9	
Effective Green, g (s)	10.3		7.0	21.3	7.9	7.9	
Actuated g/C Ratio	0.28		0.19	0.57	0.21	0.21	
Clearance Time (s)	4.0		4.0	4.0	4.0	4.0	
Vehicle Extension (s)	3.0		3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	897		315	1011	356	319	
v/s Ratio Prot	c0.13		c0.11	0.14	c0.05		
v/s Ratio Perm						0.03	
v/c Ratio	0.45		0.59	0.24	0.24	0.12	
Uniform Delay, d1	11.1		13.8	3.9	12.2	11.8	
Progression Factor	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	0.4		3.0	0.1	0.4	0.2	
Delay (s)	11.5		16.8	4.1	12.5	12.0	
Level of Service	В		В	А	В	В	
Approach Delay (s)	11.5			9.6	12.2		
Approach LOS	В			A	В		
Intersection Summary							
HCM Average Control D			10.9	H	ICM Lev	vel of Servio	ce
HCM Volume to Capacit			0.43				
Actuated Cycle Length (37.2			ost time (s)	
Intersection Capacity Ut	ilization		37.5%	10	CU Leve	el of Service	Э
Analysis Period (min)			15				
c Critical Lane Group							

٦	\mathbf{r}	•	1	Ļ	~	
---	--------------	---	---	---	---	--

	-	•	7	1	+	-	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्भ	f,		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	8	7	4	235	212	56	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	9	8	4	255	230	61	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	525	261	291				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	525	261	291				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	98	99	100				
cM capacity (veh/h)	511	778	1270				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	16	260	291				
Volume Left	9	4	0				
Volume Right	8	0	61				
cSH	609	1270	1700				
Volume to Capacity	0.03	0.00	0.17				
Queue Length 95th (ft)	2	0	0				
Control Delay (s)	11.1	0.2	0.0				
Lane LOS	В	А					
Approach Delay (s)	11.1	0.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			0.4				
Intersection Capacity U	tilization		26.4%	10	CU Leve	of Service	
Analysis Period (min)			15				

	≯	-	$\mathbf{\hat{z}}$	4	-	•	•	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•	1	ľ	el el		1	el el			र्भ	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.99		1.00	0.88			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.98	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1744		1676	1553			1731	1500
Flt Permitted	0.35	1.00	1.00	0.65	1.00		0.75	1.00			0.93	1.00
Satd. Flow (perm)	618	1765	1500	1139	1744		1316	1553			1635	1500
Volume (vph)	255	163	63	34	236	20	61	8	33	6	10	237
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	277	177	68	37	257	22	66	9	36	7	11	258
RTOR Reduction (vph)	0	0	36	0	7	0	0	25	0	0	0	177
Lane Group Flow (vph)	277	177	32	37	272	0	66	20	0	0	18	81
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	17.0	17.0	17.0	8.6	8.6		11.4	11.4			11.4	11.4
Effective Green, g (s)	17.0	17.0	17.0	8.6	8.6		11.4	11.4			11.4	11.4
Actuated g/C Ratio	0.47	0.47	0.47	0.24	0.24		0.31	0.31			0.31	0.31
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	417	824	701	269	412		412	486			512	470
v/s Ratio Prot	c0.08	0.10			0.16			0.01				
v/s Ratio Perm	c0.23		0.02	0.03			0.05				0.01	c0.05
v/c Ratio	0.66	0.21	0.05	0.14	0.66		0.16	0.04			0.04	0.17
Uniform Delay, d1	6.7	5.7	5.3	11.0	12.6		9.0	8.7			8.7	9.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.1	0.0	0.2	3.9		0.2	0.0			0.0	0.2
Delay (s)	10.6	5.9	5.3	11.2	16.5		9.2	8.7			8.7	9.2
Level of Service	В	А	А	В	В		А	А			А	Α
Approach Delay (s)		8.3			15.9			9.0			9.2	
Approach LOS		Α			В			А			Α	
Intersection Summary												
HCM Average Control E			10.5	F	ICM Lev	vel of Se	ervice		В			
HCM Volume to Capaci			0.44									
Actuated Cycle Length (36.4			ost time			8.0			
Intersection Capacity Ut	ilization		49.5%](CU Leve	el of Ser	vice		A			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{F}	4	+	•	1	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	el el		ካካ	†	1	ľ	<u></u>	1	1	<u></u>	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.96		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1693		3252	1765	1500	1676	3353	1500	1676	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1693		3252	1765	1500	1676	3353	1500	1676	3353	1500
Volume (vph)	139	54	20	235	61	238	1	685	211	216	509	27
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	151	59	22	255	66	259	1	745	229	235	553	29
RTOR Reduction (vph)	0	20	0	0	0	210	0	0	198	0	0	26
Lane Group Flow (vph)	151	61	0	255	66	49	1	745	31	235	553	3
Turn Type	Prot			Prot		Over	Prot		Over	Prot		Over
Protected Phases	7	4		3	8	1	5	2	3	1	6	7
Permitted Phases												
Actuated Green, G (s)	6.0	4.7		7.9	6.6	11.1	0.7	19.4	7.9	11.1	29.8	6.0
Effective Green, g (s)	6.0	4.7		7.9	6.6	11.1	0.7	19.4	7.9	11.1	29.8	6.0
Actuated g/C Ratio	0.10	0.08		0.13	0.11	0.19	0.01	0.33	0.13	0.19	0.50	0.10
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	170	135		435	197	282	20	1101	201	315	1691	152
v/s Ratio Prot	c0.09	0.04		0.08	c0.04	0.03	0.00	c0.22	0.02	c0.14	0.16	0.00
v/s Ratio Perm												
v/c Ratio	0.89	0.45		0.59	0.34	0.17	0.05	0.68	0.15	0.75	0.33	0.02
Uniform Delay, d1	26.2	26.0		24.1	24.2	20.1	28.9	17.1	22.6	22.7	8.7	23.9
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	38.5	2.4		2.0	1.0	0.3	1.0	1.7	0.4	9.3	0.1	0.1
Delay (s)	64.7	28.3		26.1	25.2	20.4	29.9	18.8	23.0	31.9	8.8	24.0
Level of Service	E	С		С	С	С	С	В	С	С	А	С
Approach Delay (s)		52.0			23.5			19.8			16.0	
Approach LOS		D			С			В			В	
Intersection Summary												
HCM Average Control D			22.3	F	ICM Le	vel of Se	ervice		С			
HCM Volume to Capacit			0.61									
Actuated Cycle Length (59.1			ost time			12.0			
Intersection Capacity Ut	ilization		57.4%	I	CU Leve	el of Ser	vice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	+	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		र्भ	4Î		¥			
Sign Control		Stop	Stop		Stop			
Volume (vph)	154	48	113	61	17	177		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	167	52	123	66	18	192		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	220	189	211					
Volume Left (vph)	167	0	18					
Volume Right (vph)	0	66	192					
Hadj (s)	0.19	-0.18	-0.50					
Departure Headway (s)	4.8	4.5	4.4					
Degree Utilization, x	0.29	0.24	0.26					
Capacity (veh/h)	709	755	765					
Control Delay (s)	9.8	8.9	8.9					
Approach Delay (s)	9.8	8.9	8.9					
Approach LOS	А	А	А					
Intersection Summary								
Delay			9.2					
HCM Level of Service			А					
Intersection Capacity Uti	lization		44.4%	l	CU Leve	l of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ŧ	-
---	--------------	---	---	---	---

	-	•)	1	•	-			
Movement	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations	¥			स्	4Î				
Sign Control	Stop			Free	Free				
Grade	0%			0%	0%				
Volume (veh/h)	70	137	123	92	57	77			
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92			
Hourly flow rate (vph)	76	149	134	100	62	84			
Pedestrians									
Lane Width (ft)									
Walking Speed (ft/s)									
Percent Blockage									
Right turn flare (veh)									
Median type	None								
Median storage veh)									
Upstream signal (ft)									
pX, platoon unblocked									
vC, conflicting volume	471	104	146						
vC1, stage 1 conf vol									
vC2, stage 2 conf vol									
vCu, unblocked vol	471	104	146						
tC, single (s)	6.4	6.2	4.1						
tC, 2 stage (s)	-	-							
tF (s)	3.5	3.3	2.2						
p0 queue free %	85	84	91						
cM capacity (veh/h)	500	951	1436						
Direction, Lane #	EB 1	NB 1	SB 1						
Volume Total	225	234	146						
Volume Left	225 76	234 134	146						
Volume Right	149	134	84						
cSH	729	1436	84 1700						
Volume to Capacity	0.31	0.09	0.09						
Queue Length 95th (ft)	33	0.09	0.09						
Control Delay (s)	12.1	ہ 4.8	0.0						
Lane LOS	1∠.1 B	4.0 A	0.0						
Approach Delay (s)	D 12.1	4.8	0.0						
Approach LOS	12.1 B	4.0	0.0						
	D								
Intersection Summary									
Average Delay			6.4						
Intersection Capacity Ut	tilization		43.4%	10	CU Leve	of Service	l.	А	
Analysis Period (min)			15						

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٠	\mathbf{r}	•	1	Ŧ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	4Î	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	107	29	30	132	105	114
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	116	32	33	143	114	124
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	385	176	238			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	385	176	238			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	81	96	98			
cM capacity (veh/h)	603	867	1329			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	148	176	238			
Volume Left	140	33	230			
	32	0	124			
Volume Right cSH	32 645	1329	1700			
	0.23	0.02	0.14			
Volume to Capacity	0.23	0.02	0.14			
Queue Length 95th (ft) Control Delay (s)	12.2	1.6	0.0			
	12.2 B	1.6 A	0.0			
Lane LOS			0.0			
Approach Delay (s)	12.2	1.6	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			3.7			
Intersection Capacity Ut	tilization		40.4%	IC	CU Leve	el of Service
Analysis Period (min)			15			

Movement EBT EBR WBL WBT NBL NBR
Lane Configurations
Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800
Total Lost time (s) 4.0 4.0 4.0 4.0 4.0
Lane Util. Factor 0.95 1.00 1.00 1.00 1.00
Frt 0.96 1.00 1.00 0.85
Flt Protected 1.00 0.95 1.00 0.95 1.00
Satd. Flow (prot) 3223 1676 1765 1676 1500
Flt Permitted 1.00 0.95 1.00 0.95 1.00
Satd. Flow (perm) 3223 1676 1765 1676 1500
Volume (vph) 295 103 206 554 97 180
Peak-hour factor, PHF 0.92 0.92 0.92 0.92 0.92 0.92
Adj. Flow (vph) 321 112 224 602 105 196
RTOR Reduction (vph) 64 0 0 0 0 155
Lane Group Flow (vph) 369 0 224 602 105 41
Turn Type Prot Perm
Protected Phases 4 3 8 2
Permitted Phases 2
Actuated Green, G (s) 10.8 7.6 22.4 8.1 8.1
Effective Green, g (s) 10.8 7.6 22.4 8.1 8.1
Actuated g/C Ratio 0.28 0.20 0.58 0.21 0.21
Clearance Time (s) 4.0 4.0 4.0 4.0 4.0
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0
Lane Grp Cap (vph) 904 331 1027 353 316
v/s Ratio Prot 0.11 0.13 c0.34 c0.06
v/s Ratio Perm 0.03
v/c Ratio 0.41 0.68 0.59 0.30 0.13
Uniform Delay, d1 11.3 14.3 5.1 12.8 12.3
Progression Factor 1.00 1.00 1.00 1.00 1.00
Incremental Delay, d2 0.3 5.4 0.9 0.5 0.2
Delay (s) 11.6 19.7 6.0 13.3 12.5
Level of Service B B A B B
Approach Delay (s) 11.6 9.7 12.8
Approach LOS B A B
Intersection Summary
HCM Average Control Delay 10.8 HCM Level of Service
HCM Volume to Capacity ratio 0.51
Actuated Cycle Length (s) 38.5 Sum of lost time (s)
Intersection Capacity Utilization 43.1% ICU Level of Service
Analysis Period (min) 15
c Critical Lane Group

	٨	\mathbf{F}	•	1	Ļ	∢	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			ર્શ	4Î		
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Volume (veh/h)	41	5	5	236	291	17	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	45	5	5	257	316	18	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type	None						
Median storage veh)							
Upstream signal (ft)							
pX, platoon unblocked							
vC, conflicting volume	593	326	335				
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	593	326	335				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)							
tF (s)	3.5	3.3	2.2				
p0 queue free %	90	99	100				
cM capacity (veh/h)	466	716	1225				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	50	262	335				
Volume Left	45	5	0				
Volume Right	5	0	18				
cSH	485	1225	1700				
Volume to Capacity	0.10	0.00	0.20				
Queue Length 95th (ft)	9	0	0				
Control Delay (s)	13.3	0.2	0.0				
Lane LOS	В	А					
Approach Delay (s)	13.3	0.2	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			1.1				
Intersection Capacity Ut	tilization		27.3%	IC	CU Leve	el of Service	
Analysis Period (min)			15				

	≯	-	$\mathbf{\hat{z}}$	4	+	•	1	1	1	1	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	۲	eî 👘		٦	eî 👘			÷	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Frt	1.00	1.00	0.85	1.00	0.98		1.00	0.88			1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.96	1.00
Satd. Flow (prot)	1676	1765	1500	1676	1736		1676	1561			1699	1500
Flt Permitted	0.41	1.00	1.00	0.60	1.00		0.73	1.00			0.83	1.00
Satd. Flow (perm)	726	1765	1500	1055	1736		1296	1561			1470	1500
Volume (vph)	355	240	64	31	166	20	48	7	25	25	7	320
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	386	261	70	34	180	22	52	8	27	27	8	348
RTOR Reduction (vph)	0	0	35	0	9	0	0	19	0	0	0	244
Lane Group Flow (vph)	386	261	35	34	193	0	52	16	0	0	35	104
Turn Type	pm+pt		Perm	Perm			Perm			Perm		Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4		4	8			2			6		6
Actuated Green, G (s)	19.3	19.3	19.3	7.5	7.5		11.6	11.6			11.6	11.6
Effective Green, g (s)	19.3	19.3	19.3	7.5	7.5		11.6	11.6			11.6	11.6
Actuated g/C Ratio	0.50	0.50	0.50	0.19	0.19		0.30	0.30			0.30	0.30
Clearance Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0			4.0	4.0
Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	551	876	744	203	335		386	465			438	447
v/s Ratio Prot	c0.14	0.15			0.11			0.01				
v/s Ratio Perm	c0.21		0.02	0.03			0.04				0.02	c0.07
v/c Ratio	0.70	0.30	0.05	0.17	0.58		0.13	0.03			0.08	0.23
Uniform Delay, d1	6.7	5.8	5.1	13.1	14.3		10.0	9.7			9.8	10.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	4.0	0.2	0.0	0.4	2.4		0.2	0.0			0.1	0.3
Delay (s)	10.7	6.0	5.1	13.5	16.7		10.1	9.7			9.9	10.6
Level of Service	В	А	А	В	В		В	А			А	В
Approach Delay (s)		8.5			16.2			10.0			10.5	
Approach LOS		А			В			А			В	
Intersection Summary												
HCM Average Control E			10.4	F	ICM Le	vel of Se	ervice		В			
HCM Volume to Capaci			0.51									
Actuated Cycle Length			38.9			ost time			8.0			
Intersection Capacity Ut	tilization		50.7%	10	CU Leve	el of Ser	vice		А			
Analysis Period (min)			15									
c Critical Lane Group												

	٦	-	\mathbf{F}	4	-	*	•	1	1	1	Ļ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	eî 👘		ካካ	†	1	٦	<u></u>	1	۲	- † †	1
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Total Lost time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lane Util. Factor	1.00	1.00		0.97	1.00	1.00	1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	0.99		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1676	1739		3252	1765	1500	1676	3353	1500	1676	3353	1500
Flt Permitted	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1676	1739		3252	1765	1500	1676	3353	1500	1676	3353	1500
Volume (vph)	27	75	8	234	61	241	12	720	288	294	1192	101
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	29	82	9	254	66	262	13	783	313	320	1296	110
RTOR Reduction (vph)	0	5	0	0	0	203	0	0	280	0	0	51
Lane Group Flow (vph)	29	86	0	254	66	59	13	783	33	320	1296	59
Turn Type	Prot			Prot		Over	Prot		Over	Prot		Perm
Protected Phases	7	4		3	8	1	5	2	3	1	6	
Permitted Phases												6
Actuated Green, G (s)	1.7	8.5		7.5	14.3	16.0	0.7	23.0	7.5	16.0	38.3	38.3
Effective Green, g (s)	1.7	8.5		7.5	14.3	16.0	0.7	23.0	7.5	16.0	38.3	38.3
Actuated g/C Ratio	0.02	0.12		0.11	0.20	0.23	0.01	0.32	0.11	0.23	0.54	0.54
Clearance Time (s)	4.0	4.0		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	40	208		344	355	338	17	1086	158	378	1809	809
v/s Ratio Prot	0.02	c0.05		c0.08	0.04	0.04	0.01	0.23	0.02	c0.19	c0.39	
v/s Ratio Perm												0.04
v/c Ratio	0.72	0.41		0.74	0.19	0.17	0.76	0.72	0.21	0.85	0.72	0.07
Uniform Delay, d1	34.4	28.9		30.8	23.5	22.2	35.1	21.2	29.0	26.3	12.3	7.8
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	48.4	1.3		8.0	0.3	0.2	106.9	2.4	0.7	15.9	1.4	0.0
Delay (s)	82.8	30.3		38.8	23.8	22.4	141.9	23.6	29.7	42.2	13.7	7.9
Level of Service	F	С		D	С	С	F	С	С	D	В	A
Approach Delay (s)		43.0			29.7			26.7			18.6	
Approach LOS		D			С			С			В	
Intersection Summary												
HCM Average Control D			23.8	F	ICM Lev	vel of S	ervice		С			
HCM Volume to Capacit	•		0.69									
Actuated Cycle Length (71.0		Sum of l				12.0			
Intersection Capacity Uti	lization		61.9%	I	CU Leve	el of Sei	rvice		В			
Analysis Period (min)			15									
c Critical Lane Group												

	≯	-	-	•	1	1		
Movement	EBL	EBT	WBT	WBR	SBL	SBR		
Lane Configurations		ર્સ	ef 👘		¥			
Sign Control		Stop	Stop		Stop			
Volume (vph)	163	127	74	41	66	143		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	177	138	80	45	72	155		
Direction, Lane #	EB 1	WB 1	SB 1					
Volume Total (vph)	315	125	227					
Volume Left (vph)	177	0	72					
Volume Right (vph)	0	45	155					
Hadj (s)	0.15	-0.18	-0.31					
Departure Headway (s)	4.8	4.7	4.6					
Degree Utilization, x	0.42	0.16	0.29					
Capacity (veh/h)	720	717	721					
Control Delay (s)	11.2	8.6	9.6					
Approach Delay (s)	11.2	8.6	9.6					
Approach LOS	В	А	А					
Intersection Summary								
Delay			10.1					
HCM Level of Service			В					
Intersection Capacity Uti	lization		43.1%	[(CU Leve	of Service	А	
Analysis Period (min)			15					

≯	\mathbf{r}	1	1	Ŧ	-
---	--------------	---	---	---	---

	-	•	7	I	•	-		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	¥			र्भ	¢Î,			
Sign Control	Stop			Free	Free			
Grade	0%			0%	0%			
Volume (veh/h)	58	99	130	74	110	64		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92		
Hourly flow rate (vph)	63	108	141	80	120	70		
Pedestrians								
Lane Width (ft)								
Walking Speed (ft/s)								
Percent Blockage								
Right turn flare (veh)								
Median type	None							
Median storage veh)								
Upstream signal (ft)								
pX, platoon unblocked								
vC, conflicting volume	517	154	189					
vC1, stage 1 conf vol								
vC2, stage 2 conf vol								
vCu, unblocked vol	517	154	189					
tC, single (s)	6.4	6.2	4.1					
tC, 2 stage (s)	-	-						
tF (s)	3.5	3.3	2.2					
p0 queue free %	86	88	90					
cM capacity (veh/h)	465	892	1385					
Direction, Lane #	EB 1	NB 1	SB 1					
Volume Total	171	222	189					
Volume Left	63	141	0					
Volume Right	108	0	70					
cSH	666	1385	1700					
Volume to Capacity	0.26	0.10	0.11					
Queue Length 95th (ft)	25	9	0.11					
Control Delay (s)	12.3	5.3	0.0					
Lane LOS	12.3 B	0.3 A	0.0					
Approach Delay (s)	12.3	5.3	0.0					
Approach LOS	12.3 B	0.0	0.0					
	D						 	
Intersection Summary								
Average Delay			5.6					
Intersection Capacity Ut	tilization		41.8%	IC	CU Leve	of Service	А	
Analysis Period (min)			15					

HCM Unsignalized Intersection Capacity Analysis 25: East Access Road & Rearage Road

	٨	\mathbf{r}	•	1	Ļ	~
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			र्भ	eî 🗧	
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Volume (veh/h)	144	37	35	97	137	159
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	157	40	38	105	149	173
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None					
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	417	235	322			
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	417	235	322			
tC, single (s)	6.4	6.2	4.1			
tC, 2 stage (s)						
tF (s)	3.5	3.3	2.2			
p0 queue free %	73	95	97			
cM capacity (veh/h)	574	804	1238			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total						
	197	143	322			
Volume Left	157	38	0			
Volume Right	40	0	173			
cSH	610	1238	1700			
Volume to Capacity	0.32	0.03	0.19			
Queue Length 95th (ft)	35	2	0			
Control Delay (s)	13.7	2.3	0.0			
Lane LOS	B	A	0.0			
Approach Delay (s)	13.7	2.3	0.0			
Approach LOS	В					
Intersection Summary						
Average Delay			4.6			
Intersection Capacity U	tilization		46.1%	IC	CU Leve	el of Servic
Analysis Period (min)			15			

Wal-Mart

US 16 / Sammis Trail / Moon Meadows Draft Traffic Impact Study

(Supplemental Report to the December 23rd 2005 Study to review impacts of the proposed Wal*Mart Supercenter on a connection to Highway 79 via Sammis Trail and Spring Creek Road.)

Rapid City, South Dakota

Prepared for

Wal-Mart Stores, Inc.

At the request of BFA, Inc.

Prepared by HDR Engineering, Inc.

JANUARY 9, 2006

Memo
a Elkins, and John Less) & SDDOT (Monica Heller)
Project: Wal*Mart Study – Rapid City, SD
Job No: 20494
-

Traffic Impact Analysis 1-09-06 (Additional information regarding future connection to Highway 79 via Sammis Trail and Spring Creek Road)

Study Objective

The key objective of this supplemental report to the 12-23-05 traffic impact study is to provide landowners east of the proposed Wal*Mart site an idea of the traffic levels that are to be expected in the future based on the roadway classifications with respect to the City of Rapid City future streets plan and due to the proposed Wal*Mart Supercenter.

Background

To prepare for future growth between US 16 and Highway 79, the City has adopted a future streets plan that indicates the location of many proposed roadways that will be required in the future to serve the developments south of Catron Boulevard. Although a complete land use plan has not been created, the roadway classifications were assigned based on spacing criteria that would allow for local, collector, and arterial roadways to properly serve this developing area.

Street Classifications and Anticipated Traffic Volumes

Below are standard characteristics associated with the future roadways located to the south and east of the proposed study area:

Arterials: The posted speed limit is typically 35 mph or higher with anticipated traffic volumes in excess of 15,000 vehicles per day. Arterial streets require a minimum of 100' of Right to Way to allow for a minimum of a 4-lane cross-section to be constructed.

Based on Level of Service "C" criteria supported by most city and state agencies, the following types of roadways will support the traffic volumes as indicated below on a **planning** level:

- ◆ 4-lane undivided roadway without turn lanes 15,400 vehicles per day
- ◆ 4-lane undivided roadway with right or left turn lanes 20,700 vehicles per day
- 4-lane divided roadway with right and left turn lanes -27,200 vehicles per day

It should be anticipated that arterials located in and around this study area will carry at a minimum 15,000 vehicles per day up to 30,000 vehicles per day.

Collectors: The posted speed limit is typically 30 mph or higher with anticipated traffic volumes in excess of 7,000 vehicles per day. Collector streets require a minimum of 80' of Right of Way to allow for a minimum of a two-lane cross-section to be constructed.

Based on Level of Service "C" criteria, the following types of roadways will support the traffic volumes as indicated below on a **planning** level:

- ◆ 2-lane undivided roadway without turn lanes 6,500 vehicles per day
- 2-lane undivided roadway with right of left turn lanes -10,300 vehicles per day
- ✤ 3-lane undivided roadway with left turn lanes 11,400 vehicles per day
- ◆ 3-lane undivided roadway with right and left turn lanes 16,300 vehicles per day

It should be anticipated that collector streets located in and around this study area will carry at a minimum 7,000 vehicles per day up to 15,000 vehicles per day.

The above information is valid for *planning purposes* only as an operational analysis would be required for final design of any roadway constructed. This is a v/c (volume/capacity) relationship analysis and allows city and state planners to prepare for growth in areas such as this when future land uses and exact roadway locations have not been determined.

The comparisons given above that relate volume to capacity were determined from information collected in Sioux Falls, South Dakota and were analyzed/verified using Synchro and SimTRAFFIC. The original capacity assumptions were given in a previous saturation flow rate study conducted in Sioux Falls. It should be noted that the volume/capacity information determined based on the Sioux Falls study is consistent with what the Highway Capacity Software (HCS) has now adopted based on the Florida Department of Transportations program (LOSPLAN) used to create generalized tables for transportation planning.

Effects of Wal*Mart on Future Roadways east of the Proposed Development (Connection to Highway 79 via Sammis Trail and Spring Creek Road)

The Wal*Mart Superstore including Outlots as shown in <u>Table 2</u> of the 12-23-05 report will generate roughly 1,500 trips in the P.M. peak hour. Assuming that the P.M. peak hour represents roughly 10% of the Average Daily Traffic (ADT), it was concluded that the Wal*Mart Superstore including Outlots will generate roughly 15,000 trips per day (*ITE Trip Generation Manual* would equate to roughly 14,000 to 15,000 trips per day for a normal weekday so the assumption of 10% is valid).

In discussion with the City of Rapid City and SDDOT staff, it was estimated based on the length of the connection to Highway 79, location of the proposed Wal*Mart Store in regards to future residential growth along and around the study area, proposed surrounding roadway network, and existing land uses that between **10%** to **20%** of the trips generated by Wal*Mart would use a connection to Highway 79. In terms of ADT, this would equate to 1,500 to 3,000 vehicles per day. Understanding that the connection is classified as an arterial roadway, the Wal*Mart Superstore including Outlots would represent approximately 11% ((3,000 trips generated by Wal*Mart/27,200 trips representing daily capacity)*100) of the overall daily capacity of the roadway. If the roadway classification was a collector, the Wal*Mart Superstore including Outlots would represent approximately 18% of the overall daily capacity. This also assumes that Wal*Mart is the destination of every trip using the connection between Wal*Mart and Highway 79 and is not a shared-use trip or a pass-by trip.

It should be noted that the capacity percentages given above were based on Level of Service "C" criteria. LOS "C" has generally been established as the standard for planning of transportation facilities for peak hour traffic conditions. However, LOS "D" is often accepted in urbanized areas as the operational minimum. LOS "D" criteria would indicate that the Wal*Mart Supercenter including Outlots would represent a lower percentage of the overall daily capacity.

6190 Golden Hills Drive Minneapolis, MN 55416

Conclusion

This analysis based on street classifications and capacity would indicate that the proposed Wal*Mart Supercenter including Outlots would not represent an unreasonable percentage of the future capacity available to serve this area on the connection to Highway 79.

Appendix

Supporting information from Sioux Falls Study Supporting information from FDOT Generalized Tables

Table Level of Service (LOS) by Average Daily Traffic (ADT) Volumes

								NUN	IBER OF LANE	S/CAPACITY C	ALCULATIONS			
					ART	ERIAL ROADWA	Υ						EXPRESSWAY	
ARTERIALS	VEHICLES PER HOUR PER LANE	Turn Lanes	R or L Turn Lanes	3-Lane Undivided with L Turn Lane	3-Lane Undivided with R & L Turn Lanes	Turn Lanes	R or L Turn Lanes	& L Turn Lanes	Turn Lanes	8-Lane with R & L Turn Lanes	2-Lane w/o Turn Lanes	2-Lane with R or L Turn Lanes	Turn Lanes	4-
Left/Thru/Right Lane	600	600	0	0	0	0	0	0	0	0	NA	NA	NA	
Left/Thru Lane	600	0	600	0	0	600	600	0	0	0	NA	NA	NA	
Thru/Right Lane	700	0	0	700	0	700	0	0	0	0	NA	NA	NA	
Thru Lane	800	0	0	0	800	0	800	1600	2400	3200	NA	NA	NA	
Turn Lane	350	0	350	350	700	0	350	700	700	700	NA	NA	NA	
EXPRESSWAYS														
One Thru Lane	900	NA	NA	NA	NA	NA	NA	NA	NA	NA	900	900	900	
Two + Lanes	1100	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	0	0	
Turn Lane	350	NA	NA	NA	NA	NA	NA	NA	NA	NA	0	350	700	
FREEWAYS														
Outside Lane	1900	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Center Lane	2100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Inside Lane	2300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	2000		1473						1474		101	147 (10.1	
Peak Hour Direction	Capacity	600	950	1050	1500	1300	1750	2300	3100	3900	900	1250	1600	
LOS A		180	285	315	450	390	525	690	930	1170	270	375	480	
LOS B		90	142.5	157.5	225	195	262.5	345	465	585	135	187.5	240	
LOS C		120	190	210	300	260	350	460	620	780	180	250	320	
LOS D		120	190	210	300	260	350	460	620	780	180	250	320	
LOS E		90	142.5	157.5	225	195	262.5	345	465	585	135	187.5	240	
LOS F		0	0	0	0	0	1	0	0	0	0	0	0	
(Check Capacity)		600	950	1050	1500	1300	1751	2300	3100	3900	900	1250	1600	
Peak Hour Percentage	e	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	10%	
Directional Split		60%	60%	60%	60%	55%	55%	55%	55%	55%	60%	60%	60%	
DAILY TWO-WAY CA	PACITY													
LOS A		3,000	4,750	5,250	7,500	7,090	9,550	12,550	16,910	21,270	4,500	6,250	8,000	
LOS B		1,500	2,380	2,630	3,750	3,550	4,770	6,270	8,450	10,640	2,250	3,130	4,000	
LOS C		2,000	3,170	3,500	5,000	4,730	6,360	8,360	11,270	14,180	3,000	4,170	5,330	
LOS D		2,000	3,170	3,500	5,000	4,730	6,360	8,360	11,270	14,180	3,000	4,170	5,330	
LOS E		1,500	2,380	2,630	3,750	3,550	4,770	6,270	8,450	10,640	2,250	3,130	4,000	
LOS F		0	0	0	0	0	20	0	0	0	0	0	0	
(Check Capacity)		10,000	15,850	17,510	25,000	23,650	31,830	41,810	56,350	70,910	15,000	20,850	26,660	
Capacity Rounded		10,000	15,900	17,500	25,000	23,700	31,800	41,800	56,400	70,900	15,000	20,900	26,700	

NUMBER OF LANES/CAPACITY CALCULATIONS

Notes: (1) The capacity assumptions were originally calculated based on a study conducted in Sioux Falls, SD. These assumptions were then verified using SYNCHRO and SimTraffic.

(2) The SimTraffic analysis determined that the capacity assumptions correspond to 1/4 mile signal spacing. For less than 1/4 mile spacing, the roadway is too volatile to produce arterial LOS results. For 1/2 mile spacing, the through lane capacities can be increased slightly (approximately 50 to 100 vplph).

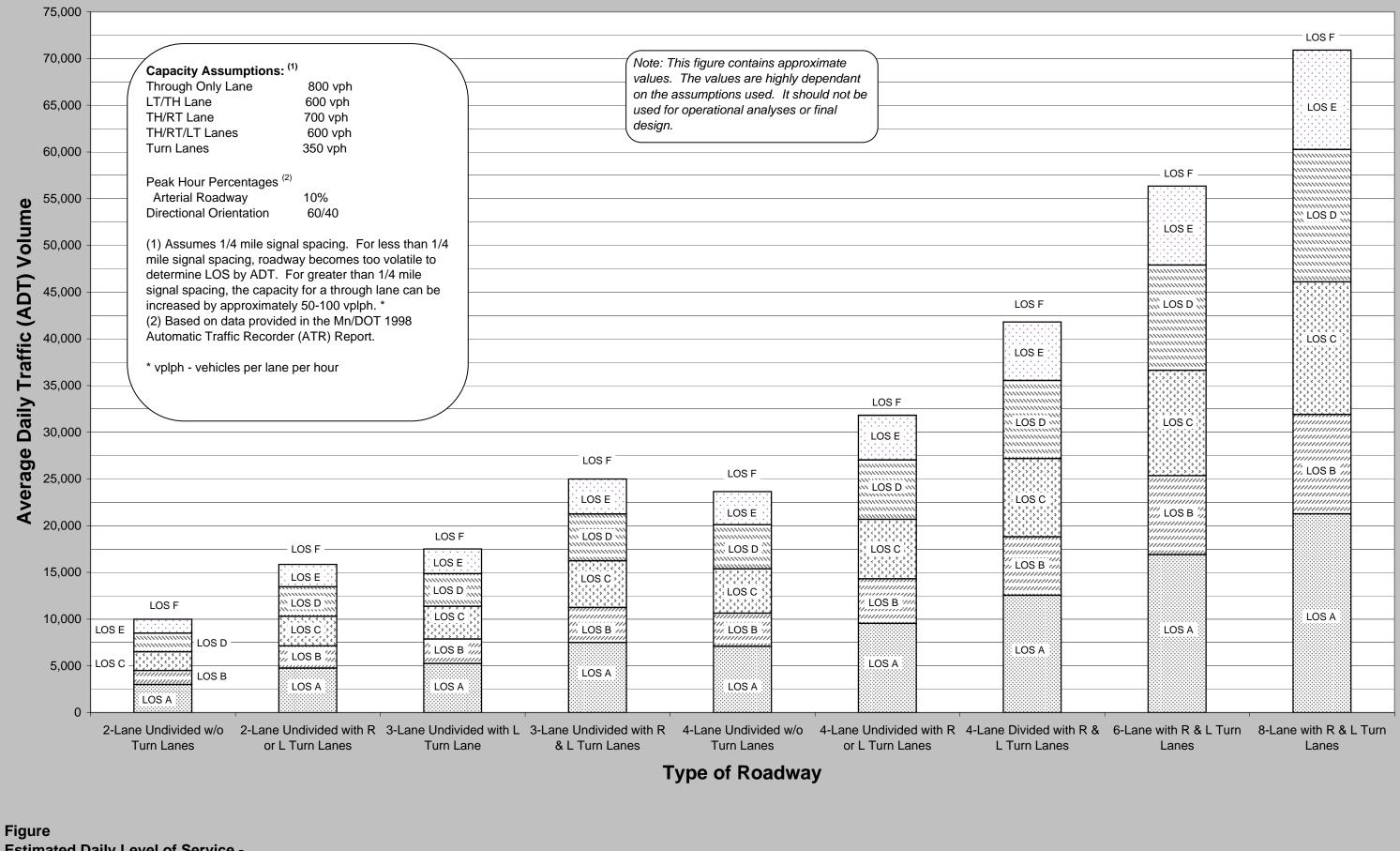
(3) The peak hour percentage of 10% for arterial roadways was calculated from the volume data provided in the 1998 ATR Report (Mn/DOT).

The peak hour percentage for freeways is approximately 9.0%. (4) The original LOS thresholds were calculated based on similar volume-to-capacity ratios.

Level of

ere calcu	nateu baseu un sinniai	volume-to-capacity
Service	v/c Ratio	
A	< 0.6	60% of capacity
3	0.6 to 0.7	70% of capacity
)	0.7 to 0.8	80% of capacity
)	0.8 to 0.9	90% of capacity
1	0.9 to 1.0	100% capacity
-	> 1.0	

However, based on examples in the 2000 Highway Capacity Manual (HCM), these percentages were adjusted to the following


Level of Service Percentage Α

> в С D F

100	i ci ociita
	30%
	15%
	20%
	20%
	15%
	0%

FREEWAY

4-Lane with R & L	6-Lane with R & L			
Turn Lanes	Turn Lanes	4-Lane	6-Lane	8-Lane
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
NA	NA	NA	NA	NA
0	0	NA	NA	NA
2200	3300	NA	NA	NA
700	700	NA	NA	NA
NA	NA	1900	1900	1900
NA	NA	0	2100	4200
NA	NA	2300	2300	2300
2900	4000	4200	6300	8400
870	1200	1260	1890	2520
435	600	630	945	1260
580	800	840	1260	1680
580	800	840	1260	1680
435	600	630	945	1260
0	0	0	0	0
	-			
2900	4000	4200	6300	8400
10%	10%	9%	9%	9%
55%	55%	55%	55%	55%
15,820	21,820	25,450	38,180	50,910
7,910	10,910	12,730	19,090	25,450
10,550	14,550	16,970	25,450	33,940
10,550	14,550	16,970	25,450	33,940
7,910	10,910	12,730	19,090	25,450
0	0	0	0	0
52,740	72,740	84,850	127,260	169,690
52,700	72,700	84,900	127,300	169,700

Estimated Daily Level of Service -Arterial Roadways

TABLE 4 - 1 GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S URBANIZED AREAS*

	UNIN	TERRUI	PTED FLO	OW HIGH	IWAYS				F	REEWAY	'S		
			Le	evel of Ser	vice		Interchan	ge spacing ≥ 2	mi. apart				
Land	s Divided	Α	В	С	D	E			Le	vel of Serv	ice		
2	Undivided	2,000	7,000	13,800	19,600	27,000	Lanes	А	В	С	D	E	
ŀ	Divided	20,400	33,000	47,800	61,800	70,200	4	23,800	39,600	55,200	67,100	74,600	
,	Divided	30,500	49,500	71,600	92,700	105,400	6	36,900	61,100	85,300	103,600	115,300	
-			O-WAY				8	49,900	82,700	115,300	140,200	156,000	
Class	s I (>0.00 to 1	.99 signal		ections per evel of Ser			10 12	63,000	104,200	145,500	176,900	196,400	
and	s Divided	А	B	C C	D	Е	12	75,900	125,800	175,500	213,500	237,100	
2	Undivided	**	4,200	13,800	16,400	16,900	Interchan	ge spacing < 2 i	mi apart				
1	Divided	4,800	29,300	34,700	35,700	***		5F8		vel of Serv	ice		
6	Divided	7,300	44,700	52,100	53,500	***	Lanes	А	В	С	D	E	
8	Divided	9,400	58,000	66,100	67,800	***	4	22,000	36,000	52,000	67,200	76,500	
	11 (2 00 + 4	50 · · ·					6	34,800	56,500	81,700	105,800	120,200	
Class	s II (2.00 to 4.1	50 signali		evel of Ser			8 10	47,500 60,200	77,000 97,500	111,400 141,200	144,300 182,600	163,900 207,600	
ane	s Divided	А	В	C	D	E	12	72,900	118,100	170,900	221,100	251,200	
2	Undivided	**	1,900	11,200	15,400	16,300	1-	12,700	110,100	170,700	221,100	201,200	
4	Divided	**	4,100	26,000	32,700	34,500							
5	Divided	**	6,500	40,300	49,200	51,800			BIC	YCLE MO	DDE		
8	Divided	**	8,500	53,300	63,800	67,000	(Note: Le	vel of service fo				based on roa	dway
								s at 40 mph pos					
Class	III (more that					id not		facility.) (Multi					
			r 750,000)		trict of an		of directio	nal roadway la	nes to deter	mine two-w	vay maximu	m service vo	lumes.)
	urbanized	i alca ove	1 750,000)				Paved	Shoulder/					
			Le	vel of Ser	vice			cle Lane			Level of Ser	rvice	
Lane	s Divided	А	В	С	D	E		verage	A	В	С	D	E
2	Undivided	**	**	5,300	12,600	15,500	0	-49%	**	**	3,200	13,800	>13,80
1	Divided	**	**	12,400	28,900	32,800	50	-84%	**	2,500	4,100	>4,100	***
5	Divided	**	**	19,500	44,700	49,300	85	-100%	3,100	7,200	>7,200	***	***
3	Divided	**	**	25,800	58,700	63,800			BEDE		IODE		
Class	IV (more that	n 4 5 sign	alized inte	rections r	er mile ar	d within	(Note: Le	vel of service for		STRIAN N		is based on	roadway
Ciass			l business					s at 40 mph pos					
	over 750,							facility.) (Multi					
			Le	vel of Serv	vice		directiona	l roadway lanes	s to determin	ne two-way	maximum	service volu	mes.)
	s Divided	А	В	С	D	E					Level of Ser		
2	Undivided	**	**	5,200	13,700	15,000		k Coverage	A	В	С	D	E
4	Divided	**	**	12,300	30,300	31,700		-49%	**	**	**	6,400	15,500
6 8	Divided Divided	**	**	19,100 25,900	45,800 59,900	47,600 62,200		-84% -100%	**		11,300	9,900	19,000 ***
5	Divided			25,900	39,900	02,200	0.5	-100%		2,200	11,500	>11,300	
		NON-ST	ATE ROA	DWAVS				B	US MODE	(Scheduled	Fixed Rout		
			ty/County		5			D		uses per ho		(0)	
			evel of Ser				(Note: Buses	per hour shown are				of the higher tra	affic flow.)
		A	В	С	D	E					Level of Ser	rvice	
	s Divided		**	9,100	14,600	15,600		k Coverage	Α	В	С	D	E
2	Undivided	**		21,400	31,100	32,900	A	-84%	**	>5	≥4	≥ 3	≥2
2 1	Undivided Divided	**	**				85-	100%	>6	>4	<u>≥</u> 3	≥2	≥l
2	Undivided	**	**	33,400	46,800	49,300						USTMENT	S
2 4	Undivided Divided	** ** **	**	33,400	46,800	49,500		ARTERIAL/					
2	Undivided Divided Divided	** ** ** Other S	** ignalized F	33,400 Roadways		49,500			DIVID	ED/UNDIV	VIDED		
2 4	Undivided Divided Divided	** ** Other Si signalized	** ignalized F l intersecti	33,400 Roadways on analysi		49,300	Lanas	(alter corr	DIVID responding v	ED/UNDIV	VIDED the indicated	d percent)	ctors
245	Undivided Divided Divided	** ** Other Si signalized	** gnalized F l intersecti evel of Ser	33,400 Roadways on analysi vice	s)		Lanes	(alter corr Median	DIVID responding Left Tur	ED/UNDIV volume by to ns Lanes	VIDED the indicated	d percent) djustment Fa	ctors
2 4 5	Undivided Divided Divided	** ** Other Si signalized	** ignalized F l intersecti	33,400 Roadways on analysi		Е	Lanes 2 2	(alter corr	DIVID responding Left Tur	ED/UNDIV volume by t ns Lanes es	VIDED the indicated	d percent)	ctors
2 1 5 2 2	Undivided Divided Divided (** ** Other Si signalized Le A	** ignalized F intersecti vvel of Ser B	33,400 Roadways on analysi vice C	s) D		2	(alter corr Median Divided	DIVID responding v Left Tur Y	ED/UNDIV volume by t ns Lanes es to	VIDED the indicated	d percent) djustment Fa +5%	ctors
2 4 5 Lanes 2 4	Undivided Divided Divided (S Divided Undivided Divided	** ** Other Si signalized Lo A ** **	** gnalized F l intersecti vel of Ser B ** **	33,400 Roadways on analysi vice C 4,800 11,100	s) D 10,000 21,700	E 12,600 25,200	2 2	(alter corr Median Divided Undivided	DIVID responding v Left Tur Y N	ED/UNDIV volume by to ns Lanes es to es	VIDED the indicated	d percent) djustment Fa +5% -20%	ctors
2 4 5 Lanes 2 4	Undivided Divided Divided (Divided Undivided Divided Ce: Florida	** ** Other Si signalized Le A ** ** Departm	** ignalized F l intersecti vel of Ser B ** ** **	33,400 Roadways on analysi vice C 4,800 11,100	s) D 10,000 21,700	E 12,600	2 2 Multi	(alter corr Median Divided Undivided Undivided	DIVID responding v Left Tur Y N Y	ED/UNDIV volume by to ns Lanes es to es	VIDED the indicated	d percent) djustment Fa +5% -20% -5%	ctors
2 4 5 2 4	Undivided Divided Divided (S Divided Undivided Divided System	** ** Other Si signalized Lo A ** ** S Plannin	** ignalized F l intersecti vel of Ser B ** ** ent of Trar g Office	33,400 Roadways on analysi vice C 4,800 11,100 nsportation	s) D 10,000 21,700	E 12,600 25,200	2 2 Multi	(alter corr Median Divided Undivided Undivided	DIVID responding v Left Tur Y N Y N	ED/UNDIV volume by i ns Lanes es io es o	VIDED the indicated Ad	d percent) djustment Fa +5% -20% -5%	ctors
2 4 6 Lanes 2 4	Undivided Divided Divided Undivided Divided Ete: Florida System 605 Sur	** ** Signalized Lo A ** ** Departm s Plannin, wannee S	** ignalized F l intersecti vel of Ser B ** ** **	33,400 Roadways on analysi vice C 4,800 11,100 msportation	s) D 10,000 21,700	E 12,600 25,200	2 2 Multi Multi	(alter corr Median Divided Undivided Undivided Undivided	DIVID responding v Left Tur Y N Y N ONE-W	ED/UNDIV volume by f ns Lanes es es o vAY FACI	VIDED the indicated Ad	d percent) djustment Fa +5% -20% -5% -25%	
2 4 6 2 4 Sourc	Undivided Divided Divided Undivided Divided Ete: Florida System 605 Sur	** ** Other Si signalized Lo A ** ** Departm s Plannin, wannee S sissee, FL	** ignalized F l intersecti vel of Ser B ** ** ent of Trar g Office treet, MS 1 32399-045	33,400 Roadways on analysi vice C 4,800 11,100 hsportation	s) D 10,000 21,700	E 12,600 25,200 02/22/02	2 2 Multi Multi Dec	(alter corr Median Divided Undivided Undivided Undivided	DIVID responding v Left Turn Y N Y N ONE-W duing two-di	ED/UNDIV volume by f ns Lanes es co co vAY FACI irectional v	VIDED the indicated Ad LITIES olumes in th	d percent) djustment Fa +5% -20% -5% -25% his table by 4	0% to
2 4 6 2 4 Source	Undivided Divided Divided Undivided Divided Ete: Florida System 605 Sur Tallaha ://www11.my	** ** Signalized Le A ** ** Departm s Plannin, wannee S Sissee, FL florida.co	** ignalized F l intersecti ivvel of Ser B ** ** ent of Trar g Office treet, MS 1 32399-045 m/planning	33,400 Roadways on analysi vice C 4,800 11,100 msportation 19 0 g/systems/	s) D 10,000 21,700 sm/los/dct	E 12,600 25,200 02/22/02 fault.htm	2 2 Multi Multi Dec o	(alter corr Median Divided Undivided Undivided Undivided	DIVID responding v Left Turn Y N Y N V ONE-W ading two-di alent one din	ED/UNDIV volume by i ns Lanes es es es o VAY FACI irectional v rectional ve	VIDED the indicated Ad LITIES olumes in th olume for on	d percent) djustment Fa +5% -20% -5% -25% his table by 4 he-way facili	0% to ties.
2 4 5 5 2 4 8 8 9 8 9 9 1 8 9 9 1 8 9 1 9 1 9 1 9 1	Undivided Divided Divided Undivided Undivided Divided Ee: Florida System 605 Sur Tallaha ://www11.my table does not con	** ** Other S: signalizec Lc A ** ** Departm s Plannin, wannee S sissee, FL: florida.co stilute a stan nd deriving c	** ignalized F l intersecti vel of Ser B ** ** ent of Trar g Office treet, MS I 32399-045 m/planning dard and shou computer mod	33,400 Roadways on analysi vice C 4,800 11,100 nsportation g/systems/ ld be used on els should no	s) D 10,000 21,700 sm/los/dcl	E 12,600 25,200 02/22/02 fault.htm planning applici corridor or inters	2 2 Multi Multi Decc o ations. The com	(alter corr Median Divided Undivided Undivided Undivided rease correspon btain the equiva	DIVID responding v Left Tur Y N Y N ONE-W ding two-di alent one dii which this table echniques exist.	ED/UNDIV volume by f ns Lanes es o volume by f es o volume by f volume by f vo	VIDED the indicated Ad LITIES olumes in th olume for on ald be used for n	d percent) djustment Fa +5% -20% -5% -25% his table by 4 he-way facili nore specific plan nore specific plan	0% to ties. nning ily volumes

Capacity and Quality of Service Manual, respectively for the automobile/truck, bicycle, pedestrian and bus modes. **Cannot be achieved using table input value defaults. ***Not applicable for that level of service letter grade. For automobile/truck modes, volumes greater than level of service D become F because intersection capacities have been reached. For bicycle and pedestrian modes, the level of service letter grade (including F) is not achievable, because there is no maximum vehicle volume threshold using table input value defaults.

TABLE 4 – 2 GENERALIZED ANNUAL AVERAGE DAILY VOLUMES FOR FLORIDA'S AREAS TRANSITIONING INTO URBANIZED AREAS OR AREAS OVER 5,000 NOT IN URBANIZED AREAS*

Level of Serv B C 6,900 12,900 30,200 43,600 45,200 65,500 WO-WAY ARTERIAL ed intersections per mile) Level of Serv B C 4,000 13,100 27,900 32,800 42,800 49,300 ed intersections per mile) Level of Serv B C ** 10,500 3,700 24,400	D 18,200 56,500 84,700 .S .S .ice D 15,500 34,200 51,400	E 24,900 64,200 96,200 E 16,300 *** ***	Lanes 4 6 8 10 (Note: Level of servic geometrics at 40 mph bicyclists using the fa below by number of c maximum service vol Paved Shoulder/	ce for the bio posted spee cility.) (Mul directional ro	B 38,700 59,800 80,900 101,800 CYCLE MC cycle mode d and traffi tiply motor	in this table c conditions	D 62,200 96,000 129,800 163,800		
ed intersections per mile) Level of Serv B C 4,000 13,100 27,900 32,800 42,800 49,300 ed intersections per mile) Level of Serv B C ** 10,500	ice D 15,500 34,200 51,400	16,300 ***	geometrics at 40 mph bicyclists using the fa below by number of c maximum service vol	ce for the bio posted spee cility.) (Mul directional ro	cycle mode d and traffi	in this table c conditions	s, not numbe		
B C 4,000 13,100 27,900 32,800 42,800 49,300 ed intersections per mile) Level of Serv B C ** 10,500	D 15,500 34,200 51,400	16,300 ***	geometrics at 40 mph bicyclists using the fa below by number of c maximum service vol	posted spee cility.) (Mul lirectional re	d and traffi	c conditions	s, not numbe		
Level of Serv B C ** 10,500	ice		David Chauldon/		Judiway land			own	
B C ** 10,500			Bicycle Lane		L	evel of Serv	rice		
6,000 38,000	D 14,500 30,600 46,100	E 15,300 32,200 48,400	Coverage 0-49% 50-84% 85-100%	A ** 3,200 PEDE	B 1,900 2,500 7,100	C 3,300 4,000 >7,100	D 13,600 >4,000 ***	E >13,60 *** ***	
ized intersections per mil									
B C ** 5,000 ** 11,700 ** 18,400	D 11,800 27,200 42,100	E 14,600 30,800 46,300	of pedestrians using the	he facility.)	(Multiply m lanes to de	notorized ve etermine two	hicle volumo way maxin	es shown	
			% Sidewalk Coverage	А	B	evel of Serv. C	vice D	Е	
			0-49% 50-84% 85-100%	** ** **	** ** 2,200	** ** 11,200	6,300 9,800 >11,200	15,400 18,800 ***	
B C ** 7,000	D 13,600	E 14,600	ARTERIAL				USTMENT	S	
** 25,700	44,100	46,400	Lanes	Median	Left T	urn Lanes	Adjustme	nt Factor	
ed intersection analysis)			2 U Multi U	Undivided Undivided		No Yes	-2 -5	5% 0% 5%	
B C ** 4,400	D 9,400	E 12,000 24,000	ivititi C				-2.	770	
Department of Transport Planning Office vannee Street, MS 19 ssee, FL 32399-0450	ation	02/22/02		0					
	B C ** 5,000 ** 11,700 ** 18,400 STATE ROADWAYS City/County Roadways Level of Servi B C ** 7,000 ** 16,400 ** 25,700 Signalized Roadways zed intersection analysis) Level of Servi B C ** 4,400 ** 10,300 Department of Transport s Planning Office wannee Street, MS 19 ssee, FL 32399-0450 com/planning/systems/sm d and should be used only for gene is should not be used for corridor on the automobile/truck modes unless/ n. Furthermore, combining levels	** 5,000 11,800 ** 11,700 27,200 ** 18,400 42,100 STATE ROADWAYS City/County Roadways Level of Service B C D ** 7,000 13,600 ** 16,400 29,300 ** 25,700 44,100 Signalized Roadways Level of Service B C D ** 4,400 9,400 ** 10,300 20,200 Department of Transportation s Planning Office wannee Street, MS 19 ssee, FL 32399-0450 com/planning/systems/sm/los/defau calculations are based only for general planning of ishould not be used for corridor or intersection of the automobile/ruck modes unless specifically is on. Furthermore, combining levels of service of page. Calculations are based on planning applically	B C D E ** 5,000 11,800 14,600 ** 11,700 27,200 30,800 ** 18,400 42,100 46,300 STATE ROADWAYS City/County Roadways Level of Service B C D E ** 7,000 13,600 14,600 ** 16,400 29,300 30,900 ** 16,400 29,300 30,900 ** 16,400 29,300 30,900 ** 16,400 29,300 30,900 ** 10,300 20,200 24,000 Signalized Roadways zed intersection analysis) Level of Service B C D E ** 10,300 20,200 24,000 Department of Transportation 02/22/02 s Planning Office wannee Street, MS 19 ssece, FL 32399-0450 <td com="" defaul<="" los="" planning="" sm="" systems="" td=""><td>Level of Serviceroadway geometric at of pedestrians using th by number of direction service volumes.)**$5,000$$11,800$$14,600$**$11,700$$27,200$$30,800$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$16,400$$29,300$*$16,400$$29,300$$30,900$**$25,700$$44,100$$46,400$**$16,400$$29,300$$30,900$**$25,700$$44,100$$46,400$*Level of ServiceLanesBCDE**$4,400$$9,400$$12,000$**$10,300$$20,200$$24,000$Department of Transportation$02/22/02$$022/02$s Planning Office$02/22/02$$000$the automobile/truck modes unless specifically stated. Level of service letter grade thresholds ata and should be used of or corridor or intersection design, where more refined techniques exist, Value at the automobile/truck modes unless specifically stated. Level of service letter grade thresholds at</td><td>Level of Serviceroadway geometric at 40 mph pos of pedestrians using the facility.)**5,00011,80014,600**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**State ROADWAYS**City/County Roadways**Level of ServiceBCBCD**16,40029,300**25,70044,1004 and should be used on any size2Department of Transportation02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02and should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivethe automobile/truck modes unless specifically stated. Level of service is througe of service is different modes into one overall roadway level of service is throw of service is througe of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is not one overall roadway level of service is not one overall roadway level of service is throw of service is different modes into one overall roadway level of se</td><td>Level of Service roadway geometric at 40 mph posted speed a B C D ** 5,000 11,800 14,600 ** 11,700 27,200 30,800 ** 11,700 27,200 30,800 ** 11,400 42,100 46,300 ** 18,400 42,100 46,300 STATE ROADWAYS City/County Roadways L City/County Roadways Stidewalk Coverage A B C D E ** 7,000 13,600 14,600 ** 16,400 29,300 30,900 ** 25,700 44,100 46,400 Level of Service B C D B C D E ** 4,400 9,400 12,000 ** 10,300 20,200 24,000 Department of Transportation 02/22/02 S s Planning Office wannee Street, MS 19 Sec, FL 32399-0450 com/planning/systems/sm/los/default.htm O</td><td>Level of Serviceroadway geometric at 40 mph posted speed and traffic cd of pedestrians using the facility.) (Multiply motorized ve by number of directional roadway lanes to determine two service volumes.)**11,70027,20030,800**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**Evel of ServiceABBCDE**7,00013,60014,600**16,40029,30030,900**25,70044,10046,400**10,30020,20024,000Level of ServiceBCDBCDLevel of ServiceBCBCDLevel of ServiceLanesBCDLevel of ServiceNoBCDLevel of Service2BCDLevel of ServiceBBCDLevel of ServiceBBCDCD* 10,30020,200s Planning OfficeONE-WAY FACILITIESs Planning OfficeSisee, FL 32399-0450com/planning/systems/sm/los/default.htmd ad should be used only for general planning applications. The computer models from which this table is derived should be used for more spa dus should not be used of corridor or intersection design, whe</td><td>BCDE**$5,000$$11,800$$14,600$**$11,700$$27,200$$30,800$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$STATE ROADWAYSLevel of ServiceSTATE ROADWAYSLevel of ServiceBCDLevel of ServiceBCBCD**$16,400$$29,300$$30,900$****$25,700$$44,100$**$25,700$$44,100$**$25,700$$44,100$*$46,400$*$20,200$Level of ServiceLanesBCDLevel of ServiceLanesMultiUndividedYead intersection analysis)2Level of Service2BCBCLevel of ServiceBCBCBCLevel of ServiceBCBCLevel of ServiceBCBCCD**$10,300$$20,200$$24,000$Department of Transportation$02/22/02$s Planning Officewannee Street, MS 19ssee, FL 32399-0450</td></td>	<td>Level of Serviceroadway geometric at of pedestrians using th by number of direction service volumes.)**$5,000$$11,800$$14,600$**$11,700$$27,200$$30,800$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$16,400$$29,300$*$16,400$$29,300$$30,900$**$25,700$$44,100$$46,400$**$16,400$$29,300$$30,900$**$25,700$$44,100$$46,400$*Level of ServiceLanesBCDE**$4,400$$9,400$$12,000$**$10,300$$20,200$$24,000$Department of Transportation$02/22/02$$022/02$s Planning Office$02/22/02$$000$the automobile/truck modes unless specifically stated. Level of service letter grade thresholds ata and should be used of or corridor or intersection design, where more refined techniques exist, Value at the automobile/truck modes unless specifically stated. Level of service letter grade thresholds at</td> <td>Level of Serviceroadway geometric at 40 mph pos of pedestrians using the facility.)**5,00011,80014,600**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**State ROADWAYS**City/County Roadways**Level of ServiceBCBCD**16,40029,300**25,70044,1004 and should be used on any size2Department of Transportation02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02and should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivethe automobile/truck modes unless specifically stated. Level of service is througe of service is different modes into one overall roadway level of service is throw of service is througe of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is not one overall roadway level of service is not one overall roadway level of service is throw of service is different modes into one overall roadway level of se</td> <td>Level of Service roadway geometric at 40 mph posted speed a B C D ** 5,000 11,800 14,600 ** 11,700 27,200 30,800 ** 11,700 27,200 30,800 ** 11,400 42,100 46,300 ** 18,400 42,100 46,300 STATE ROADWAYS City/County Roadways L City/County Roadways Stidewalk Coverage A B C D E ** 7,000 13,600 14,600 ** 16,400 29,300 30,900 ** 25,700 44,100 46,400 Level of Service B C D B C D E ** 4,400 9,400 12,000 ** 10,300 20,200 24,000 Department of Transportation 02/22/02 S s Planning Office wannee Street, MS 19 Sec, FL 32399-0450 com/planning/systems/sm/los/default.htm O</td> <td>Level of Serviceroadway geometric at 40 mph posted speed and traffic cd of pedestrians using the facility.) (Multiply motorized ve by number of directional roadway lanes to determine two service volumes.)**11,70027,20030,800**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**Evel of ServiceABBCDE**7,00013,60014,600**16,40029,30030,900**25,70044,10046,400**10,30020,20024,000Level of ServiceBCDBCDLevel of ServiceBCBCDLevel of ServiceLanesBCDLevel of ServiceNoBCDLevel of Service2BCDLevel of ServiceBBCDLevel of ServiceBBCDCD* 10,30020,200s Planning OfficeONE-WAY FACILITIESs Planning OfficeSisee, FL 32399-0450com/planning/systems/sm/los/default.htmd ad should be used only for general planning applications. The computer models from which this table is derived should be used for more spa dus should not be used of corridor or intersection design, whe</td> <td>BCDE**$5,000$$11,800$$14,600$**$11,700$$27,200$$30,800$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$**$18,400$$42,100$$46,300$STATE ROADWAYSLevel of ServiceSTATE ROADWAYSLevel of ServiceBCDLevel of ServiceBCBCD**$16,400$$29,300$$30,900$****$25,700$$44,100$**$25,700$$44,100$**$25,700$$44,100$*$46,400$*$20,200$Level of ServiceLanesBCDLevel of ServiceLanesMultiUndividedYead intersection analysis)2Level of Service2BCBCLevel of ServiceBCBCBCLevel of ServiceBCBCLevel of ServiceBCBCCD**$10,300$$20,200$$24,000$Department of Transportation$02/22/02$s Planning Officewannee Street, MS 19ssee, FL 32399-0450</td>	Level of Serviceroadway geometric at of pedestrians using th by number of direction service volumes.)** $5,000$ $11,800$ $14,600$ ** $11,700$ $27,200$ $30,800$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ ** $16,400$ $29,300$ * $16,400$ $29,300$ $30,900$ ** $25,700$ $44,100$ $46,400$ ** $16,400$ $29,300$ $30,900$ ** $25,700$ $44,100$ $46,400$ *Level of ServiceLanesBCDE** $4,400$ $9,400$ $12,000$ ** $10,300$ $20,200$ $24,000$ Department of Transportation $02/22/02$ $022/02$ s Planning Office $02/22/02$ 000 the automobile/truck modes unless specifically stated. Level of service letter grade thresholds ata and should be used of or corridor or intersection design, where more refined techniques exist, Value at the automobile/truck modes unless specifically stated. Level of service letter grade thresholds at	Level of Serviceroadway geometric at 40 mph pos of pedestrians using the facility.)**5,00011,80014,600**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**State ROADWAYS**City/County Roadways**Level of ServiceBCBCD**16,40029,300**25,70044,1004 and should be used on any size2Department of Transportation02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02s Planning Office02/22/02and should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivand should be used only for general planning applications. The computer models from which this table is derivethe automobile/truck modes unless specifically stated. Level of service is througe of service is different modes into one overall roadway level of service is throw of service is througe of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is throw of service is different modes into one overall roadway level of service is not one overall roadway level of service is not one overall roadway level of service is throw of service is different modes into one overall roadway level of se	Level of Service roadway geometric at 40 mph posted speed a B C D ** 5,000 11,800 14,600 ** 11,700 27,200 30,800 ** 11,700 27,200 30,800 ** 11,400 42,100 46,300 ** 18,400 42,100 46,300 STATE ROADWAYS City/County Roadways L City/County Roadways Stidewalk Coverage A B C D E ** 7,000 13,600 14,600 ** 16,400 29,300 30,900 ** 25,700 44,100 46,400 Level of Service B C D B C D E ** 4,400 9,400 12,000 ** 10,300 20,200 24,000 Department of Transportation 02/22/02 S s Planning Office wannee Street, MS 19 Sec, FL 32399-0450 com/planning/systems/sm/los/default.htm O	Level of Serviceroadway geometric at 40 mph posted speed and traffic cd of pedestrians using the facility.) (Multiply motorized ve by number of directional roadway lanes to determine two service volumes.)**11,70027,20030,800**11,70027,20030,800**18,40042,10046,300**18,40042,10046,300**18,40042,10046,300**Evel of ServiceABBCDE**7,00013,60014,600**16,40029,30030,900**25,70044,10046,400**10,30020,20024,000Level of ServiceBCDBCDLevel of ServiceBCBCDLevel of ServiceLanesBCDLevel of ServiceNoBCDLevel of Service2BCDLevel of ServiceBBCDLevel of ServiceBBCDCD* 10,30020,200s Planning OfficeONE-WAY FACILITIESs Planning OfficeSisee, FL 32399-0450com/planning/systems/sm/los/default.htmd ad should be used only for general planning applications. The computer models from which this table is derived should be used for more spa dus should not be used of corridor or intersection design, whe	BCDE** $5,000$ $11,800$ $14,600$ ** $11,700$ $27,200$ $30,800$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ ** $18,400$ $42,100$ $46,300$ STATE ROADWAYSLevel of ServiceSTATE ROADWAYSLevel of ServiceBCDLevel of ServiceBCBCD** $16,400$ $29,300$ $30,900$ **** $25,700$ $44,100$ ** $25,700$ $44,100$ ** $25,700$ $44,100$ * $46,400$ * $20,200$ Level of ServiceLanesBCDLevel of ServiceLanesMultiUndividedYead intersection analysis) 2 Level of Service2BCBCLevel of ServiceBCBCBCLevel of ServiceBCBCLevel of ServiceBCBCCD** $10,300$ $20,200$ $24,000$ Department of Transportation $02/22/02$ s Planning Officewannee Street, MS 19ssee, FL 32399-0450

**Not applicable for the level of service letter grade. For automobile/truck modes, volumes greater than level of service D become F because intersection capacities have been reached. For bicycle and pedestrian modes, the level of service letter grade (including F) is not achievable, because there is no maximum vehicle volume threshold using table input value defaults.